
 2.15 Advanced Material: Compiling C and
Interpreting Java

 Th is section gives a brief overview of how the C compiler works and how Java
is executed. Because the compiler will signifi cantly aff ect the performance of a
computer, understanding compiler technology today is critical to understanding
performance. Keep in mind that the subject of compiler construction is usually
taught in a one- or two-semester course, so our introduction will necessarily only
touch on the basics.

 Th e second part of this section, starting on page 2.15-15, is for readers interested
in seeing how an objected-oriented language like Java executes on the LEGv8
architecture. It shows the Java bytecodes used for interpretation and the LEGv8 code
for the Java version of some of the C segments in prior sections, including Bubble
Sort. It covers both the Java virtual machine and just-in-time (JIT) compilers.

 Compiling C
 Th is fi rst part of the section introduces the internal anatomy of a compiler. To
start, Figure 2.15.1 shows the structure of recent compilers, and we describe the
optimizations in the order of the passes of that structure.

 FIGURE 2.15.1 The structure of a modern optimizing compiler consists of a number of
passes or phases. Logically, each pass can be thought of as running to completion before the next occurs.
In practice, some passes may handle one procedure at a time, essentially interleaving with another pass.

Dependencies
Language dependent;
machine independent

Somewhat language dependent;
largely machine independent

Small language dependencies;
machine dependencies slight
(e.g., register counts/types)

Highly machine dependent;
language independent

Front end per
language

Function
Transform language to
common intermediate form

For example, loop
transformations and
procedure inlining
(also called
procedure integration)

Including global and local
optimizations register
allocation

Detailed instruction selection
and machine-dependent
optimizations; may include
or be followed by assembler

High-level
optimizations

Global
optimizer

Code generator

Intermediate
representation

 2.15 Advanced Material: Compiling C and Interpreting Java 2.15-3

 To illustrate the concepts in this part of this section, we will use the C version of
a while loop from page 95:

 while (save[i] == k)
 i += 1;

 The Front End
 Th e function of the front end is to read in a source program; check the syntax
and semantics; and translate the source program to an intermediate form that
interprets most of the language-specifi c operation of the program. As we will see,
intermediate forms are usually simple, and some are, in fact, similar to the Java
bytecodes (see Figure 2.15.8).

 Th e front end is typically broken into four separate functions:

 1. Scanning reads in individual characters and creates a string of tokens.
Examples of tokens are reserved words, names, operators, and punctuation
symbols. In the above example, the token sequence is while, (, save,
[, i,], ==, k,), i, +=, 1 . A word like while is recognized as
a reserved word in C, but save , i , and j are recognized as names, and 1 is
recognized as a number.

 2. Parsing takes the token stream, ensures the syntax is correct, and produces
an abstract syntax tree , which is a representation of the syntactic structure of
the program. Figure 2.15.2 shows what the abstract syntax tree might look
like for this program fragment.

 3. Semantic analysis takes the abstract syntax tree and checks the program for
semantic correctness. Semantic checks normally ensure that variables and
types are properly declared and that the types of operators and objects match,
a step called type checking . During this process, a symbol table representing
all the named objects—classes, variables, and functions—is usually created
and used to type-check the program.

 4. Generation of the intermediate representation (IR) takes the symbol table and
the abstract syntax tree and generates the intermediate representation that is
the output of the front end. Intermediate representations usually use simple
operations on a small set of primitive types, such as integers, characters, and
reals. Java bytecodes represent one type of intermediate form. In modern
compilers, the most common intermediate form looks much like the LEGv8
instruction set but with an infi nite number of virtual registers; later, we
describe how to map these virtual registers to a fi nite set of real registers.
 Figure 2.15.3 shows how our example might be represented in such an
intermediate form.

 Th e intermediate form specifi es the functionality of the program in a manner
independent of the original source. Aft er this front end has created the intermediate
form, the remaining passes are largely language independent.

2.15-4 2.15 Advanced Material: Compiling C and Interpreting Java

 High-Level Optimizations
 High-level optimizations are transformations that are done at something close to
the source level.

 Th e most common high-level transformation is probably procedure inlining ,
which replaces a call to a function by the body of the function, substituting the
caller’s arguments for the procedure’s parameters. Other high-level optimizations
involve loop transformations that can reduce loop overhead, improve memory
access, and exploit the hardware more eff ectively. For example, in loops that
execute many iterations, such as those traditionally controlled by a for statement,
the optimization of loop-unrolling is oft en useful. Loop-unrolling involves taking
a loop, replicating the body multiple times, and executing the transformed loop
fewer times. Loop-unrolling reduces the loop overhead and provides opportunities
for many other optimizations. Other types of high-level transformations include

 loop-unrolling
 A technique to get more
performance from loops
that access arrays, in
which multiple copies of
the loop body are made
and instructions from
diff erent iterations are
scheduled together.

while statement

while ydob tnemetats noitidnoc

expression �� assignment

�� comparison left-hand side expression

identifier factor

l number

1

 k yarra expression

expression expression

factor factor

array access identifier

identifier factor

save identifier

i

 FIGURE 2.15.2 An abstract syntax tree for the while example. Th e roots of the tree consist of
the informational tokens such as numbers and names. Long chains of straight-line descendents are oft en
omitted in constructing the tree.

 2.15 Advanced Material: Compiling C and Interpreting Java 2.15-5

sophisticated loop transformations such as interchanging nested loops and
blocking loops to obtain better memory behavior; see Chapter 5 for examples.

 Local and Global Optimizations
 Within the pass dedicated to local and global optimization, three classes of
optimization are performed:

 1. Local optimization works within a single basic block. A local optimization
pass is oft en run as a precursor and successor to global optimization to
“clean up” the code before and aft er global optimization.

 2. Global optimization works across multiple basic blocks; we will see an
example of this shortly.

 3. Global register allocation allocates variables to registers for regions of the
code. Register allocation is crucial to getting good performance in modern
processors.

 Several optimizations are performed both locally and globally, including
common subexpression elimination, constant propagation, copy propagation,
dead store elimination, and strength reduction. Let’s look at some simple examples
of these optimizations.

comments are written like this--source code often included
while (save[i] == k)
LDAR1,save#loads the starting address of save into
R1
LDUR R2,i
MUL R3,R2,8 # Multiply R2 by 8
ADD R4,R3,R1
LDUR R5,[R4,0] # load save[i]
LDUR R6,k
CMP R5,R6
B.NE endwhileloop
i += 1
LDUR R6, i
ADDI R7,R6,1 # increment
STUR R7,i
B loop # next iteration
endwhileloop:

loop:

 FIGURE 2.15.3 The while loop example is shown using a typical intermediate representation.
 In practice, the names save , i , and k would be replaced by some sort of address, such as a reference to either the
local stack pointer or a global pointer, and an off set, similar to the way save[i] is accessed. Note that the format
of the LEGv8 instructions is diff erent from the rest of the chapter, because they represent intermediate representations
here using RXX notation for registers.

2.15-6 2.15 Advanced Material: Compiling C and Interpreting Java

 Common subexpression elimination fi nds multiple instances of the same
expression and replaces the second one by a reference to the fi rst. Consider, for
example, a code segment to add 4 to an array element:

 x[i] = x[i] + 4

 Th e address calculation for x[i] occurs twice and is identical since neither the
starting address of x nor the value of i changes. Th us, the calculation can be
reused. Let’s look at the intermediate code for this fragment, since it allows several
other optimizations to be performed. Th e unoptimized intermediate code is on the
left . On the right is the optimized code, using common subexpression elimination
to replace the second address calculation with the fi rst. Note that the register
allocation has not yet occurred, so the compiler is using virtual register numbers
like R100 here.

 // x[i] + 4 // x[i] + 4
 LDA R100,x LDA R100,x
 LDUR R101,i LDUR R101,i
 MUL R102,R101,8 LSL R102,R101,#3
 ADD R103,R100,R102 ADD R103,R100,R102
 LDUR R104, [R103, #0] LDUR R104, [R103, #0]
 // // value of x[i] is in R104
 ADD R105, R104,4 ADD R105, R104,4
 LDUR R107,i STUR R105, [R103, #0]
 MULL R108,R107,8
 ADD R109,R106,R107
 STUR R105,[R109, #0]

 If the same optimization were possible across two basic blocks, it would then be
an instance of global common subexpression elimination.

 Let’s consider some of the other optimizations:

 ■ Strength reduction replaces complex operations by simpler ones and can be
applied to this code segment, replacing the MULT by a shift left .

 ■ Constant propagation and its sibling constant folding fi nd constants in code
and propagate them, collapsing constant values whenever possible.

 ■ Copy propagation propagates values that are simple copies, eliminating the
need to reload values and possibly enabling other optimizations, such as
common subexpression elimination.

 ■ Dead store elimination fi nds stores to values that are not used again and
eliminates the store; its “cousin” is dead code elimination , which fi nds unused
code—code that cannot aff ect the result of the program—and eliminates it.
With the heavy use of macros, templates, and the similar techniques designed
to reuse code in high-level languages, dead code occurs surprisingly oft en.

 2.15 Advanced Material: Compiling C and Interpreting Java 2.15-7

 Compilers must be conservative . Th e fi rst task of a compiler is to produce correct
code; its second task is usually to produce fast code, although other factors, such as
code size, may sometimes be important as well. Code that is fast but incorrect—for
any possible combination of inputs—is simply wrong. Th us, when we say a compiler
is “conservative,” we mean that it performs an optimization only if it knows with
100% certainty that, no matter what the inputs, the code will perform as the user
wrote it. Since most compilers translate and optimize one function or procedure
at a time, most compilers, especially at lower optimization levels, assume the worst
about function calls and about their own parameters.

 Programmers concerned about the performance of critical loops, especially in real-
time or embedded applications, can fi nd themselves staring at the assembly language
produced by a compiler and wondering why the compiler failed to perform some
global optimization or to allocate a variable to a register throughout a loop. Th e
answer oft en lies in the dictate that the compiler be conservative. Th e opportunity for
improving the code may seem obvious to the programmer, but then the programmer
oft en has knowledge that the compiler does not have, such as the absence of aliasing
between two pointers or the absence of side eff ects by a function call. Th e compiler
may indeed be able to perform the transformation with a little help, which could
eliminate the worst-case behavior that it must assume. Th is insight also illustrates
an important observation: programmers who use pointers to try to improve
performance in accessing variables, especially pointers to values on the stack that
also have names as variables or as elements of arrays, are likely to disable many
compiler optimizations. Th e result is that the lower-level pointer code may run no
better, or perhaps even worse, than the higher-level code optimized by the compiler.

 Understanding
Program
Performance

 Global Code Optimizations

 Many global code optimizations have the same aims as those used in the local
case, including common subexpression elimination, constant propagation, copy
propagation, and dead store and dead code elimination.

 Th ere are two other important global optimizations: code motion and induction
variable elimination. Both are loop optimizations; that is, they are aimed at code
in loops. Code motion fi nds code that is loop invariant: a particular piece of
code computes the same value on every iteration of the loop and, hence, may be
computed once outside the loop. Induction variable elimination is a combination of
transformations that reduce overhead on indexing arrays, essentially replacing array
indexing with pointer accesses. Rather than examine induction variable elimination
in depth, we point the reader to Section 2.14 , which compares the use of array
indexing and pointers; for most loops, a modern optimizing compiler can perform
the transformation from the more obvious array code to the faster pointer code.

2.15-8 2.15 Advanced Material: Compiling C and Interpreting Java

 Implementing Local Optimizations

 Local optimizations are implemented on basic blocks by scanning the basic block
in instruction execution order, looking for optimization opportunities. In the
assignment statement example on page 2.15-6, the duplication of the entire address
calculation is recognized by a series of sequential passes over the code. Here is how
the process might proceed, including a description of the checks that are needed:

 1. Determine that the two LDA operations return the same result by observing
that the operand x is the same and that the value of its address has not been
changed between the two LDA operations.

 2. Replace all uses of R106 in the basic block by R101 .

 3. Observe that i cannot change between the two LDURs that reference it. So
replace all uses of R107 with R101 .

 4. Observe that the MUL instructions now have the same input operands, so
that R108 may be replaced by R102 .

 5. Observe that now the two ADD instructions have identical input operands
(R100 and R102), so replace the R109 with R103 .

 6. Use dead store code elimination to delete the second set of LDA,LDUR,
MUL , and ADD instructions since their results are unused.

 Th roughout this process, we need to know when two instances of an operand
have the same value. Th is is easy to determine when they refer to virtual registers,
since our intermediate representation uses such registers only once, but the
problem can be trickier when the operands are variables in memory, even though
we are only considering references within a basic block.

 It is reasonably easy for the compiler to make the common subexpression
elimination determination in a conservative fashion in this case; as we will see in
the next subsection, this is more diffi cult when branches intervene.

 Implementing Global Optimizations

 To understand the challenge of implementing global optimizations, let’s consider
a few examples:

 ■ Consider the case of an opportunity for common subexpression elimination,
say, of an IR statement like ADD Rx , R20 , R50 . To determine whether two
such statements compute the same value, we must determine whether the
values of R20 and R50 are identical in the two statements. In practice, this
means that the values of R20 and R50 have not changed between the fi rst
statement and the second. For a single basic block, this is easy to decide; it is
more diffi cult for a more complex program structure involving multiple basic
blocks and branches.

 ■ Consider the second LDUR of i into R107 within the earlier example: how do
we know whether its value is used again? If we consider only a single basic

 2.15 Advanced Material: Compiling C and Interpreting Java 2.15-9

block, and we know that all uses of R107 are within that block, it is easy to see.
As optimization proceeds, however, common subexpression elimination and
copy propagation may create other uses of a value. Determining that a value is
unused and the code is dead is more diffi cult in the case of multiple basic blocks.

 ■ Finally, consider the load of k in our loop, which is a candidate for code
motion. In this simple example, we might argue that it is easy to see that k
is not changed in the loop and is, hence, loop invariant. Imagine, however, a
more complex loop with multiple nestings and if statements within the body.
Determining that the load of k is loop invariant is harder in such a case.

 Th e information we need to perform these global optimizations is similar: we
need to know where each operand in an IR statement could have been changed or
 defi ned (use-defi nition information). Th e dual of this information is also needed:
that is, fi nding all the uses of that changed operand (defi nition-use information).
 Data fl ow analysis obtains both types of information.

 Global optimizations and data fl ow analysis operate on a control fl ow graph , where
the nodes represent basic blocks and the arcs represent control fl ow between basic
blocks. Figure 2.15.4 shows the control fl ow graph for our simple loop example,
with one important transformation introduced. We describe the transformation in
the caption, but see if you can discover it, and why it was done, on your own!

 FIGURE 2.15.4 A control fl ow graph for the while loop example. Each node represents a basic
block, which terminates with a branch or by sequential fall-through into another basic block that is also
the target of a branch. Th e IR statements have been numbered for ease in referring to them. Th e important
transformation performed was to move the while test and conditional branch to the end. Th is eliminates the
unconditional branch that was formerly inside the loop and places it before the loop. Th is transformation
is so important that many compilers do it during the generation of the IR. Th e MUL was also replaced with
(“strength-reduced to”) an SLL .

9. LDUR R6, i
10. ADDI R7,R6, #1
11. STUR R7,i

1. LDA R1,save
2. LDUR R2,i
3. LSL R3,R2, #3
4. ADD R4,R3, R1
5. LDUR R5,[R4,0]
6. LDUR R6,k
7. CMP R5,R6
8. B.EQ,startwhileloop

2.15-10 2.15 Advanced Material: Compiling C and Interpreting Java

 Suppose we have computed the use-defi nition information for the control
fl ow graph in Figure 2.15.4 . How does this information allow us to perform code
motion? Consider IR statements number 1 and 6: in both cases, the use-defi nition
information tells us that there are no defi nitions (changes) of the operands of these
statements within the loop. Th us, these IR statements can be moved outside the
loop. Notice that if the LDA of save and the LDUR of k are executed once, just prior
to the loop entrance, the computational eff ect is the same, but the program now
runs faster since these two statements are outside the loop. In contrast, consider
IR statement 2, which loads the value of i . Th e defi nitions of i that aff ect this
statement are both outside the loop, where i is initially defi ned, and inside the loop
in statement 10 where it is stored. Hence, this statement is not loop invariant.

 Figure 2.15.5 shows the code aft er performing both code motion and induction
variable elimination, which simplifi es the address calculation. Th e variable i can
still be register allocated, eliminating the need to load and store it every time, and
we will see how this is done in the next subsection.

 Before we turn to register allocation, we need to mention a caveat that also
illustrates the complexity and diffi culty of optimizers. Remember that the compiler
must be cautious. To be conservative, a compiler must consider the following
question: Is there any way that the variable k could possibly ever change in this
loop? Unfortunately, there is one way. Suppose that the variable k and the variable
 i actually refer to the same memory location, which could happen if they were
accessed by pointers or reference parameters.

 FIGURE 2.15.5 The control fl ow graph showing the representation of the while loop
example after code motion and induction variable elimination. Th e number of instructions in
the inner loop has been reduced from 11 to 7.

LDUR R2,i
ADDI R7,R6,#1
ADDI R4,R4,#8
STUR R7,i

LDA R1,save
LDUR R6,k
LDUR R2,i
LSL R3,R2,#3
ADD R4,R3,R1

LDUR R5,[R4,0]
CMP R5,R6
B.EQ startwhileloop

 2.15 Advanced Material: Compiling C and Interpreting Java 2.15-11

 I am sure that many readers are saying, “Well, that would certainly be a stupid
piece of code!” Alas, this response is not open to the compiler, which must
translate the code as it is written. Recall too that the aliasing information must
also be conservative; thus, compilers oft en fi nd themselves negating optimization
opportunities because of a possible alias that exists in one place in the code or
because of incomplete information about aliasing.

 Register Allocation
 Register allocation is perhaps the most important optimization for modern
load-store architectures. Eliminating a load or a store gets rid of an instruction.
Furthermore, register allocation enhances the value of other optimizations, such as
common subexpression elimination. Fortunately, the trend toward larger register
counts in modern architectures has made register allocation simpler and more
eff ective. Register allocation is done on both a local basis and a global basis, that is,
across multiple basic blocks but within a single function. Local register allocation
is usually done late in compilation, as the fi nal code is generated. Our focus here is
on the more challenging and more opportunistic global register allocation.

 Modern global register allocation uses a region-based approach, where a
region (sometimes called a live range) represents a section of code during which
a particular variable could be allocated to a particular register. How is a region
selected? Th e process is iterative:

 1. Choose a defi nition (change) of a variable in a given basic block; add that
block to the region.

 2. Find any uses of that defi nition, which is a data fl ow analysis problem; add
any basic blocks that contain such uses, as well as any basic block that the
value passes through to reach a use, to the region.

 3. Find any other defi nitions that also can aff ect a use found in the previous
step and add the basic blocks containing those defi nitions, as well as the
blocks the defi nitions pass through to reach a use, to the region.

 4. Repeat steps 2 and 3 using the defi nitions discovered in step 3 until
convergence.

 Th e set of basic blocks found by this technique has a special property: if the
designated variable is allocated to a register in all these basic blocks, then there is
no need for loading and storing the variable.

 Modern global register allocators start by constructing the regions for every
virtual register in a function. Once the regions are constructed, the key question
is how to allocate a register to each region: the challenge is that certain regions
overlap and may not use the same register. Regions that do not overlap (i.e.,
share no common basic blocks) can share the same register. One way to record
the interference among regions is with an interference graph , where each node
represents a region, and the arcs between nodes represent that the regions have
some basic blocks in common.

2.15-12 2.15 Advanced Material: Compiling C and Interpreting Java

 Once an interference graph has been constructed, the problem of allocating
registers is equivalent to a famous problem called graph coloring: fi nd a color for
each node in a graph such that no two adjacent nodes have the same color. If the
number of colors equals the number of registers, then coloring an interference
graph is equivalent to allocating a register for each region! Th is insight was the
initial motivation for the allocation method now known as region-based allocation,
but originally called the graph-coloring approach. Figure 2.15.6 shows the fl ow
graph representation of the while loop example aft er register allocation.

 What happens if the graph cannot be colored using the number of registers
available? Th e allocator must spill registers until it can complete the coloring. By
doing the coloring based on a priority function that takes into account the number
of memory references saved and the cost of tying up the register, the allocator
attempts to avoid spilling for the most important candidates.

 Spilling is equivalent to splitting up a region (or live range); if the region is split,
fewer other regions will interfere with the two separate nodes representing the
original region. A process of splitting regions and successive coloring is used to
allow the allocation process to complete, at which point all candidates will have
been allocated a register. Of course, whenever a region is split, loads and stores
must be introduced to get the value from memory or to store it there. Th e location
chosen to split a region must balance the cost of the loads and stores that must be
introduced against the advantage of freeing up a register and reducing the number
of interferences.

 FIGURE 2.15.6 The control fl ow graph showing the representation of the while loop
example after code motion and induction variable elimination and register allocation,
using the LEGv8 register names. Th e number of IR statements in the inner loop has now dropped to
only fi ve from seven before register allocation and 11 before any global optimizations. Th e value of i resides
in X11 at the end of the loop and may need to be stored eventually to maintain the program semantics. If i
were unused aft er the loop, not only could the store be avoided, but also the increment inside the loop could
be eliminated!

ADDI X11,X11,#1
ADDI X13,X13,#8

LDA X9,save
LDUR X10,k
LDUR X11,i
LSL X12,X11,#3
ADD X13,X12,X9

LDUR X12,[X13,0]
CMP X12,X10
B.EQ startwhileloop

 2.15 Advanced Material: Compiling C and Interpreting Java 2.15-13

 Modern register allocators are incredibly eff ective in using the large register
counts available in modern processors. In many programs, the eff ectiveness of
register allocation is limited not by the availability of registers but by the possibilities
of aliasing that cause the compiler to be conservative in its choice of candidates.

 Code Generation
 Th e fi nal steps of the compiler are code generation and assembly. Most compilers
do not use a stand-alone assembler that accepts assembly language source code;
to save time, they instead perform most of the same functions: fi lling in symbolic
values and generating the binary code as the last stage of code generation.

 In modern processors, code generation is reasonably straightforward, since
the simple architectures make the choice of instruction relatively obvious. Code
generation is more complex for the more complicated architectures, such as the
x86, since multiple IR instructions may collapse into a single machine instruction.
In modern compilers, this compilation process uses pattern matching with either a
tree-based pattern matcher or a pattern matcher driven by a parser.

 During code generation, the fi nal stages of machine-dependent optimization
are also performed. Th ese include some constant folding optimizations, as well as
localized instruction scheduling (see Chapter 4).

 Optimization Summary
 Figure 2.15.7 gives examples of typical optimizations, and the last column

indicates where the optimization is performed in the gcc compiler. It is sometimes
diffi cult to separate some of the simpler optimizations—local and processor-
dependent optimizations—from transformations done in the code generator, and
some optimizations are done multiple times, especially local optimizations, which
may be performed before and aft er global optimization as well as during code
generation.

 Today, essentially all programming for desktop and server applications is done in
high-level languages, as is most programming for embedded applications. Th is
development means that since most instructions executed are the output of a
compiler, an instruction set architecture is mainly a compiler target. With Moore’s
Law comes the temptation of adding sophisticated operations in an instruction
set. Th e challenge is that they may not exactly match what the compiler needs to
produce or may be so general that they aren’t fast. For example, consider special
loop instructions found in some computers. Suppose that instead of decrementing
by one, the compiler wanted to increment by four, or instead of branching on not
equal zero, the compiler wanted to branch if the index was less than or equal to the
limit. Th e loop instruction may be a mismatch. When faced with such objections,

 Hardware/
Software
Interface

2.15-14 2.15 Advanced Material: Compiling C and Interpreting Java

 Elaboration Some more sophisticated compilers, and many research compilers, use
an analysis technique called interprocedural analysis to obtain more information about
functions and how they are called. Interprocedural analysis attempts to discover what
properties remain true across a function call. For example, we might discover that a
function call can never change any global variables, which might be useful in optimizing
a loop that calls such a function. Such information is called may-information or fl ow-
insensitive information and can be obtained reasonably effi ciently, although analyzing
a call to a function F requires analyzing all the functions that F calls, which makes
the process somewhat time consuming for large programs. A more costly property to
discover is that a function must always change some variable; such information is called
 must-information or fl ow-sensitive information . Recall the dictate to be conservative:
may-information can never be used as must-information—just because a function may
change a variable does not mean that it must change it. It is conservative, however, to
use the negation of may-information, so the compiler can rely on the fact that a function
 will never change a variable in optimizations around the call site of that function.

the instruction set designer might next generalize the operation, adding another
operand to specify the increment and perhaps an option on which branch condition
to use. Th en the danger is that a common case, say, incrementing by one, will be
slower than a sequence of simple operations.

 FIGURE 2.15.7 Major types of optimizations and explanation of each class. Th e third column shows when these occur at
diff erent levels of optimization in gcc. Th e GNU organization calls the three optimization levels medium (O1), full (O2), and full with integration
of small procedures (O3).

level ccgnoitanalpxEeman noitazimitpO

 edni rossecorp ;level ecruos eht raen ro tAlevel hgiH pendent

3Oydob erudecorp yb llac erudecorp ecalpeRnoitargetni erudecorP

edoc enil-thgiarts nihtiWlacoL

1 atupmoc emas eht fo secnatsni owt ecalpeRnoitanimile noisserpxebus nommoC Oypoc elgnis yb noit

Constant propagation Replace all instances of a variable that is as signed a constant with the
constant

O1

Stack height reduction Rearrange expression tree to minimize re sources needed for ex pression evaluation O1

hcnarb a ssorcAlabolG

Global common subexpression
elimi nation

2Osehcnarb sessorc noisrev siht tub ,lacol sa emaS

 elbairav a fo secnatsni lla ecalpeRnoitagaporp ypoC A that has been assigned X (i.e., A = X) with X O2

2Opool ehteht fo noitareti hcae eulav emas setupmoc taht pool a morf edoc evomeRnoitom edoC

Induction variable elimina 2 aluclac gnisserdda yarra etanimile/yfilpmiSnoit Ospool nihtiw snoit

Processor dependent Depends on processor knowledge

1 noc a yb ylpitlum ecalper ;selpmaxe ynaMnoitcuder htgnertS Ostfihs htiw tnats

1 rep enilepip evorpmi ot snoitcurtsni redroeRgniludehcs enilepiP Oecnamrof

1Otegrat sehcaer taht tnemecalpsid hcnarb tsetrohs eht esoohCnoitazimitpo tesffo hcnarB

 2.15 Advanced Material: Compiling C and Interpreting Java 2.15-15

 One of the most important uses of interprocedural analysis is to obtain so-
called alias information. An alias occurs when two names may designate the same
variable. For example, it is quite helpful to know that two pointers passed to a
function may never designate the same variable. Alias information is usually fl ow-
insensitive and must be used conservatively.

 Interpreting Java
 Th is second part of the section is for readers interested in seeing how an object-
oriented language like Java executes on an LEGv8 architecture. It shows the Java
bytecodes used for interpretation and the LEGv8 code for the Java version of some
of the C segments in prior sections, including Bubble Sort.

 Let’s quickly review the Java lingo to make sure we are all on the same page. Th e
big idea of object-oriented programming is for programmers to think in terms
of abstract objects, and operations are associated with each type of object. New
types can oft en be thought of as refi nements to existing types, and so the new types
use some operations for the existing types without change. Th e hope is that the
programmer thinks at a higher level, and that code can be reused more readily if
the programmer implements the common operations on many diff erent types.

 Th is diff erent perspective led to a diff erent set of terms. Th e type of an object
is a class , which is the defi nition of a new data type together with the operations
that are defi ned to work on that data type. A particular object is then an instance
of a class, and creating an object from a class is called instantiation . Th e operations
in a class are called methods , which are similar to C procedures. Rather than call
a procedure as in C, you invoke a method in Java. Th e other members of a class
are fi elds , which correspond to variables in C. Variables inside objects are called
 instance fi elds . Rather than access a structure with a pointer, Java uses an object
reference to access an object. Th e syntax for method invocation is x.y , where x is
an object reference and y is the method name.

 Th e parent–child relationship between older and newer classes is captured by
the verb “extends”: a child class extends (or subclasses) a parent class. Th e child
class typically will redefi ne some of the methods found in the parent to match the
new data type. Some methods work fi ne, and the child class inherits those methods.

 To reduce the number of errors associated with pointers and explicit memory
deallocation, Java automatically frees unused storage, using a separate garbage
collector that frees memory when it is full. Hence, new creates a new instance of a
dynamic object on the heap, but there is no free in Java. Java also requires array
bounds to be checked at runtime to catch another class of errors that can occur in
C programs.

 object-oriented
language
 A programming language
that is oriented around
objects rather than
actions, or data versus
logic.

2.15-16 2.15 Advanced Material: Compiling C and Interpreting Java

 Interpretation
 As mentioned before, Java programs are distributed as Java bytecodes, and the Java
Virtual Machine (JVM) executes Java byte codes. Th e JVM understands a binary
format called the class fi le format. A class fi le is a stream of bytes for a single class,
containing a table of valid methods with their bytecodes, a pool of constants that
acts in part as a symbol table, and other information such as the parent class of this
class.

 When the JVM is fi rst started, it looks for the class method main . To start any
Java class, the JVM dynamically loads, links, and initializes a class. Th e JVM loads
a class by fi rst fi nding the binary representation of the proper class (class fi le) and
then creating a class from that binary representation. Linking combines the class
into the runtime state of the JVM so that it can be executed. Finally, it executes the
class initialization method that is included in every class.

 Figure 2.15.8 shows Java bytecodes and their corresponding LEGv8 instructions,
illustrating fi ve major diff erences between the two:

 1. To simplify compilation, Java uses a stack instead of registers for operands.
Operands are pushed on the stack, operated on, and then popped off the
stack.

 2. Th e designers of the JVM were concerned about code size, so bytecodes vary
in length between one and fi ve bytes, versus the four-byte, fi xed-size LEGv8
instructions. To save space, the JVM even has redundant instructions of
varying lengths whose only diff erence is size of the immediate. Th is decision
illustrates a code size variation of our third design principle: make the
common case small .

 3. Th e JVM has safety features embedded in the architecture. For example,
array data transfer instructions check to be sure that the fi rst operand is a
reference and that the second index operand is within bounds.

 4. To allow garbage collectors to fi nd all live pointers, the JVM uses diff erent
instructions to operate on addresses versus integers so that the JVM can
know what operands contain addresses. LEGv8 generally lumps integers and
addresses together.

 5. Finally, unlike LEGv8, Java bytecodes include Java-specifi c instructions that
perform complex operations, like allocating an array on the heap or invoking
a method.

 2.15 Advanced Material: Compiling C and Interpreting Java 2.15-17

 FIGURE 2.15.8 Java bytecode architecture versus LEGv8. Although many bytecodes are simple, those in the last half-dozen rows
above are complex and specifi c to Java. Bytecodes are one to fi ve bytes in length, hence their name. Th e Java mnemonics uses the prefi x i for
32-bit integer, a for reference (address), s for 16-bit integers (short), and b for 8-bit bytes. We use I8 for an 8-bit constant and I16 for a
16-bit constant. LEGv8 uses registers for operands, but the JVM uses a stack. Th e compiler knows the maximum size of the operand stack for
each method and simply allocates space for it in the current frame. Here is the notation in the Meaning column: TOS : top of stack; NOS: next
position below TOS ; NNOS : next position below NOS ; pop : remove TOS ; pop2 : remove TOS and NOS ; and push : add a position to the
stack. *NOS and *NNOS mean access the memory location pointed to by the address in the stack at those positions. Const[] refers to the
runtime constant pool of a class created by the JVM, and Frame[] refers to the variables of the local method frame. Th e only missing LEGv8
instructions from Figure 2.1 (or LEGv8 pseudoinstructions) are FOR, ANDI, ORRI, CMPI, MOVK and MOVZ . Th e missing Java
bytecodes from Figure 2.1 are a few arithmetic and logical operators, some tricky stack management, compares to 0 and branch, support for
branch tables, type conversions, more variations of the complex, Java-specifi c instructions plus operations on fl oating-point data, 64-bit integers
(longs), and 16-bit characters.

Java bytecodeOperationCategory
Size
(bits) Meaning

ARMv8
instr.

NOS=TOS+NOS; popADD8ddaiddaArithmetic

NOS=TOS–NOS; popSUB8busitcartbus

Frame[I8a]= Frame[I8a] + I8bADDI8b8Ia8Icniitnemercni

Data transfer load local integer/address iload I8/aload I8 16 LDUR TOS=Frame[I8]

load local integer/address iload_/aload_{0,1,2,3} 8 LDUR TOS=Frame[{0,1,2,3}]

store local integer/address istore I8/astore I8 16 STUR Frame[I8]=TOS; pop

load integer/address from array iaload/aaload 8 LDUR NOS=*NOS[TOS]; pop

store integer/address into array iastore/aastore 8 STUR *NNOS[NOS]=TOS; pop2

pop;]SOT[SON*=SONLDURH8daolasyarramorfflahdaol

2pop;SOT=]SON[SONN*STURH8erotsasyarraotniflaherots

pop;]SOT[SON*=SONLDURB8daolabyarramorfetybdaol

2pop;SOT=]SON[SONN*STURB8erotsabyarraotnietyberots

load immediate bipush I8, sipush I16 16, 24 ADDI push; TOS=I8 or I16

load immediate iconst_{–1,0,1,2,3,4,5} 8 ADDI push; TOS={–1,0,1,2,3,4,5}

pop;SON&SOT=SONAND8dnaidnalacigoL

pop;SON|SOT=SONORR8roiro

pop;SOT<<SON=SONLSL8lhsitfeltfihs

pop;SOT>>SON=SONLSR8rhsuithgirtfihs

Conditional
branch

branch on equal if_icompeq I16 24 CBZ if TOS == NOS, go to I16; pop2

branch on not equal if_icompne I16 24 CBNZ if TOS != NOS, go to I16; pop2

2pop;61Iotog,SON}=>,>,=<,<{SOTfiCMP4261I}eg,tg,el,tl{pmoci_fierapmoc

Unconditional
jump

61IotogB4261Iotogpmuj

BR8nruteri,ternruter

3+CP=SOT;hsup;61IotogBL4261Irsjenituorbusotpmuj

Stack
management

remove from stack pop, pop2 8 pop, pop2

SON=SOT;hsup8pudkcatsnoetacilpud

T=SOT;SOT=SON;SON=T8pawskcatsnosnoitisop2potpaws

Safety check check for null reference ifnull I16, ifnotnull I16 24 if TOS {==,!=} null, go to I16

get length of array arraylength 8 push; TOS = length of array

check if object a type instanceof I16 24 TOS = 1 if TOS matches type of
Const[I16]; TOS = 0 otherwise

on type
Invocation invoke method invokevirtual I16 24 Invoke method in Const[I16], dispatching

Allocation create new class instance new I16 24 Allocate object type Const[I16] on heap

create new array newarray I16 24 Allocate array type Const[I16] on heap

2.15-18 2.15 Advanced Material: Compiling C and Interpreting Java

 Compiling a while Loop in Java Using Bytecodes

 Compile the while loop from page 95, this time using Java bytecodes:

 while (save[i] == k)
 i += 1;

 Assume that i , k , and save are the fi rst three local variables. Show the
addresses of the bytecodes. Th e LEGv8 version of the C loop in Figure 2.15.3
took seven instructions and 28 bytes. How big is the bytecode version?

 Th e fi rst step is to put the array reference in save on the stack:

 0 aload_3 // Push local variable 3 (save[]) onto stack

 Th is 1-byte instruction informs the JVM that an address in local variable 3 is
being put on the stack. Th e 0 on the left of this instruction is the byte address
of this fi rst instruction; bytecodes for each method start at 0. Th e next step is
to put the index on the stack:

 1 iload_1 // Push local variable 1 (i) onto stack

 Like the prior instruction, this 1-byte instruction is a short version of a more
general instruction that takes 2 bytes to load a local variable onto the stack. Th e
next instruction is to get the value from the array element:

 2 iaload // Put array element (save[i]) onto stack

 Th is 1-byte instruction checks the prior two operands, pops them off the stack,
and then puts the value of the desired array element onto the new top of the
stack. Next, we place k on the stack:

 3 iload_2 // Push local variable 2 (k) onto stack

 We are now ready for the while test:

 4 if_icompne, Exit // Compare and exit if not equal

 Th is 3-byte instruction compares the top two elements of the stack, pops them
off the stack, and branches if they are not equal. We are fi nally prepared for the
body of the loop:

 7 iinc, 1, 1 // Increment local variable 1 by 1 (i+=1)

EXAMPLE

ANSWER

 2.15 Advanced Material: Compiling C and Interpreting Java 2.15-19

 Th is unusual 3-byte instruction increments a local variable by 1 without using
the operand stack, an optimization that again saves space. Finally, we return to
the top of the loop with a 3-byte branch:

 10 go to 0 // Go to top of Loop (byte address 0)

 Th us, the bytecode version takes seven instructions and 13 bytes, almost
half the size of the LEGv8 C code. (As before, we can optimize this code to
branch less.)

 Compiling for Java
 Since Java is derived from C and Java has the same built-in types as C, the assignment
statement examples in Sections 2.2 to 2.6 are the same in Java as they are in C. Th e
same is true for the if statement example in Section 2.7 .

 Th e Java version of the while loop is diff erent, however. Th e designers of C
leave it up to the programmers to be sure that their code does not exceed the array
bounds. Th e designers of Java wanted to catch array bound bugs, and thus require
the compiler to check for such violations. To check bounds, the compiler needs to
know what they are. Java includes an extra doubleword in every array that holds
the upper bound. Th e lower bound is defi ned as 0.

 Compiling a while Loop in Java

 Modify the LEGv8 code for the while loop on page 95 to include the array
bounds checks that are required by Java. Assume that the length of the array is
located just before the fi rst element of the array.

 Let’s assume that Java arrays reserved the fi rst two doublewords of arrays before
the data start. We’ll see the use of the fi rst doubleword soon, but the second
doubleword has the array length. Before we enter the loop, let’s load the length
of the array into a temporary register:

 LDUR X11, [X25, #8] // Temp reg X11 = length of
array save

 Before we multiply i by 8, we must test to see if it’s less than 0 or greater
than the last element of the array. Th e fi rst step is to check if i is less than 0:

 Loop: CMP X22, XZR // Test if i < 0
 B.LT IndexOutOfBounds // if i<0, goto Error

 Since the array starts at 0, the index of the last array element is one less than the
length of the array. Th us, the test of the upper array bound is to be sure that i is

EXAMPLE

ANSWER

2.15-20 2.15 Advanced Material: Compiling C and Interpreting Java

less than the length of the array. Th us, the second step is to branch to an error
if it’s greater than or equal to length .

 CMP X22,X11 // compare i to length
 B.GE,IndexOutOfBounds //if i>=length, goto Error

 Th e next two lines of the LEGv8 while loop are unchanged from the C version:

 LSL X10,X22, #3 // Temp reg X10 = 8 * i
 ADD X10, X10,X25 // X10 = address of save[i]

 We need to account for the fi rst 16 bytes of an array that are reserved in Java.
We do that by changing the address fi eld of the load from 0 to 16 :

 LDUR X9, [X10,#16] // Temp reg X9 = save[i]

 Th e rest of the LEGv8 code from the C while loop is fi ne as is:

 SUB X11,X9,X24 // X11 = save[i] - k
 CBNZ X11 Exit // go to Exit if save[i] ≠ (X11≠0)
 ADD X22,X22,1 // i = i + 1
 B Loop // go to Loop
 Exit:

 (See the exercises for an optimization of this sequence.)

 Invoking Methods in Java
 Th e compiler picks the appropriate method depending on the type of object. In
a few cases, it is unambiguous, and the method can be invoked with no more
overhead than a C procedure. In general, however, the compiler knows only that
a given variable contains a pointer to an object that belongs to some subtype of a
general class. Since it doesn’t know at compile time which subclass the object is,
and thus which method should be invoked, the compiler will generate code that
fi rst tests to be sure the pointer isn’t null and then uses the code to load a pointer to
a table with all the legal methods for that type. Th e fi rst doubleword of the object
has the method table address, which is why Java arrays reserve two doublewords.
Let’s say it’s using the fi ft h method that was declared for that class. (Th e method
order is the same for all subclasses.) Th e compiler then takes the fi ft h address from
that table and invokes the method at that address.

 Th e cost of object orientation in general is that method invocation takes fi ve steps:

 1. A conditional branch to be sure that the pointer to the object is valid;

 2. A load to get the address of the table of available methods;

 3. Another load to get the address of the proper method;

 2.15 Advanced Material: Compiling C and Interpreting Java 2.15-21

 4. Placing a return address into the return register; and fi nally

 5. A branch register to invoke the method.

 A Sort Example in Java
 Figure 2.15.9 shows the Java version of exchange sort. A simple diff erence is that
there is no need to pass the length of the array as a separate parameter, since Java
arrays include their length: v.length denotes the length of v .

 A more signifi cant diff erence is that Java methods are prepended with keywords
not found in the C procedures. Th e sort method is declared public static
while swap is declared protected static . Public means that sort can be
invoked from any other method, while protected means swap can only be called by
other methods within the same package and from methods within derived classes.
A static method is another name for a class method—methods that perform
class-wide operations and do not apply to an individual object. Static methods are
essentially the same as C procedures.

 Th is straightforward translation from C into static methods means there is no
ambiguity on method invocation, and so it can be just as effi cient as C. It also is limited
to sorting integers, which means a diff erent sort has to be written for each data type.

 To demonstrate the object orientation of Java, Figure 2.15.10 shows the
new version with the changes highlighted. First, we declare v to be of the type
 Comparable and replace v[j] > v[j + 1] with an invocation of compareTo .
By changing v to this new class, we can use this code to sort many data types.

 public A Java keyword
that allows a method to
be invoked by any other
method.

 protected A Java key
word that restricts
invocation of a method
to other methods in that
package.

 package Basically a
directory that contains a
group of related classes.

 static method A method
that applies to the whole
class rather than to an
individual object. It is
unrelated to static in C.

 FIGURE 2.15.9 An initial Java procedure that performs a sort on the array v. Changes from
Figures 2.24 and 2.26 are highlighted.

public class sort {

 public static void sort (int[] v) {

 for (int i = 0; i < v.length; i += 1) {

 for (int j = i - 1; j >= 0 && v[j] > v[j + 1]; j –= 1) {

 swap(v, j);

 }

 }

 protected static void swap(int[] v, int k) {

 int temp = v[k];

 v[k] = v[k+1];

 v[k+1] = temp;

 }}

2.15-22 2.15 Advanced Material: Compiling C and Interpreting Java

 Th e method compareTo compares two elements and returns a value greater than
0 if the parameter is larger than the object, 0 if it is equal, and a negative number
if it is smaller than the object. Th ese two changes generalize the code so it can
sort integers, characters, strings, and so on, if there are subclasses of Comparable
with each of these types and if there is a version of compareTo for each type.
For pedagogic purposes, we redefi ne the class Comparable and the method
 compareTo here to compare integers. Th e actual defi nition of Comparable in the
Java library is considerably diff erent.

 Starting from the LEGv8 code that we generated for C, we show what changes
we made to create the LEGv8 code for Java.

 For swap , the only signifi cant diff erences are that we must check to be sure the
object reference is not null and that each array reference is within bounds. Th e fi rst
test checks that the address in the fi rst parameter is not zero:

 swap: CBZ X0,NullPointer // if X0==0,goto Error

 FIGURE 2.15.10 A revised Java procedure that sorts on the array v that can take on more types. Changes from Figure
2.15.9 are highlighted.

public class sort {

 public static void sort (Comparable[] v) {

 for (int i = 0; i < v.length; i += 1) {

 for (int j = i – 1; j >= 0 && v[j].compareTo(v[j + 1]);

j –= 1) {

 swap(v, j);

 }

 }

 protected static void swap(Comparable[] v, int k) {

 Comparable temp = v[k];

 v[k] = v[k+1];

 v[k+1] = temp;

 }}

public class Comparable {

 public int(compareTo (int x)

 { return value – x; }

 public int value;

}

 2.15 Advanced Material: Compiling C and Interpreting Java 2.15-23

 Next, we load the length of v into a register and check that index k is OK.

 LDUR X11,[X0,#8] // Temp reg X11 = length of array v
 CMP X1,XZR // Compare k to 0
 B.LT IndexOutOfBounds // if k < 0, goto Error
 CMP X1,X11 // Compare k to length
 B.GE IndexOutOfBounds // if k >= length, goto Error

 Th is check is followed by a check that k+1 is within bounds.

 ADDI X10,X1,#1 // Temp reg X10 = k+1
 CMP X10,XZR // Compare k+1 to 0
 B.LT IndexOutOfBounds // if k+1 < 0, goto Error
 CMP X10,X11 // Compare k+1 to length
 B.GE IndexOutOfBounds // if k+1 >= length, goto Error

 Figure 2.15.11 highlights the extra LEGv8 instructions in swap that a Java
compiler might produce. We again must adjust the off set in the load and store to
account for two doublewords reserved for the method table and length.

 Figure 2.15.12 shows the method body for those new instructions for sort . (We
can take the saving, restoring, and return from Figure 2.28 .)

 Th e fi rst test is again to make sure the pointer to v is not null:

 CBZ X0,NullPointer // if X0==0,goto Error

 FIGURE 2.15.11 LEGv8 assembly code of the procedure swap in Figure 2.24.

Bounds check

swap: CBZ X0, NullPointer # if X0==0,goto Error
 LDUR X10, [X0,-8] # Temp reg X10 = length of array v
 CMP X1, XZR # Test if 1 if k < 0
 B.LT IndexOutOfBounds # if k < 0,goto Error
 CMP X1, X10 # Test if k >= length
 B.GT IndexOutOfBounds # if k >= length,goto Error
 ADDI X9, X1, 1 # Temp reg X9 = k+1
 CMP X9, XZR # Test if k+1 < 0
 B.LT IndexOutOfBounds # if k+1 < 0,goto Error
 CMP X9, X10 # Test if k+1 >= length
 B.GT IndexOutOfBounds # if k+1 >= length,goto Error

Method body

 LSL X10, X1,3 # reg X10 = k * 8
 ADD X10, X0,X10 # reg X10 = v + (k * 8)

reg X10 has the address of v[k]
 LDUR X9, [X10,0] # reg X9 (temp) = v[k]
 LDUR X11,[X10,8] # reg X11 = v[k + 1]

refers to next element of v
 STUR X11,[X10,0] # v[k] = reg X11
 STUR X9, [X10,8] # v[k+1] = reg X9 (temp)

Procedure return

 BR X10 # return to calling routine

2.15-24 2.15 Advanced Material: Compiling C and Interpreting Java

 Next, we load the length of the array (we use register X22 to keep it similar to the
code for the C version of swap):

 LDUR X22, [X0, #8] //X22 = length of array v

 Now we must ensure that the index is within bounds. Since the fi rst test of the
inner loop is to test if j is negative, we can skip that initial bound test. Th at leaves
the test for too big:

 CMP X20,X22 // compare j to length
 B.GE,IndexOutOfBounds //if j > = length, goto Error

 FIGURE 2.15.12 LEGv8 assembly version of the method body of the Java version of sort . Th e new code is highlighted in
this fi gure. We must still add the code to save and restore registers and the return from the LEGv8 code found in Figure 2.27 . To keep the code
similar to that fi gure, we load v.length into X22 instead of into a temporary register. To reduce the number of lines of code, we make the
simplifying assumption that compareTo is a leaf procedure and we do not need to push registers to be saved on the stack.

Method body

Move parameters # copy parameter X0 into X21X21, X0MOV

Test ptr null CBZ X0, NullPointer # if X0==0,goto Error

Get array length # X22 = length of array vX22, [X0,8]LDUR

Outer loop
i = 0X19, XZRMOV

for1tst: CMP X19, X1t0, # test if X19 ≥ X1 (i ≥ n)
B.GT exitl # go to exit1 if X19 ≥ X1 (i ≥ n)

Inner loop start
SUBI X20, X19, 1 # j = i – 1

for2tst: CMP X20, XZR # Test if X20 < 0 (j < 0)
B.LT exit2 # go to exit2 if X20 < 0 (j < 0)

Test if j too big
CMP X20, X22 # Test if j >= length
B.GT IndexOutOfBounds # if j >= length, goto Error

Get v[j]
LSL X10, X20, 3 # reg X10 = j * 8
ADD X11, X0, X10 # reg X11 = v + (j * 8)
LDUR X12, [X11,0] # reg X12 = v[j]

Test if j+1 < 0 or if
j+1 too big

Temp reg X10 = j+1X10, X20, 1ADDI
CMP X10, XZR # Test if j+1 < 0
B.LT IndexOutOfBounds # if j+1 < 0, goto Error
CMP X10, X22 # Test if j+1 >= length
B.GT IndexOutOfBounds # if j+1 >= length, goto Error

Get v[j+1] LDUR X13, [X11,8] # reg X13 = v[j + 1]

Load method table # X14 = address of method tableX14, [X0,0]LDUR

Get method addr # X14 = address of first methodX14, [X14,16]LDUR

Pass parameters # 1st parameter of compareTo is v[j] X0, X21MOV
2nd param. of compareTo is v[j+1]X1, X20MOV

Set return addr # load return addressX30,L1LDA

Call indirectly # call code for compareToX14BR

Test if should skip
swap

L1: CMP X12, X13 # compare X12 to X13
B.LE exit2 # go to exit2 if X12 ≤ X13

Pass parameters
and call swap

1st parameter of swap is vX0, X21MOV
2nd parameter of swap is jX1, X20MOV
swap code shown in Figure 2.34swapBL

Inner loop end SUBI X20, X20, 1 # j –= 1
for2tstB # jump to test of inner loop

Outer loop exit2: ADDI X19, X19, 1 # i += 1
for1tstB # jump to test of outer loop

 2.15 Advanced Material: Compiling C and Interpreting Java 2.15-25

 Th e code for testing j + 1 is quite similar to the code for checking k + 1 in
 swap , so we skip it here.

 Th e key diff erence is the invocation of compareTo . We fi rst load the address
of the table of legal methods, which we assume is two doublewords before the
beginning of the array:

 LDUR X14, [X0,#0] // X14 = address of method table

 Given the address of the method table for this object, we then get the desired
method. Let’s assume compareTo is the third method in the Comparable class.
To pick the address of the third method, we load that address into a temporary
register:

 LDUR X14, [X14, #16] // X14 = address of third method

 We are now ready to call compareTo . Th e next step is to save the necessary
registers on the stack. Fortunately, we don’t need the temporary registers or
argument registers aft er the method invocation, so there is nothing to save. Th us,
we simply pass the parameters for compareTo :

 MOV X0, X12 // 1st parameter of compareTo is v[j]
 MOV X1, X13 // 2nd parameter of compareTo is v[j+1]

 Since we are using a branch register to invoke compareTo , we need to pass the
return address explicitly. We use the pseudoinstruction load address (LDA) and
label where we want to return, and then do the indirect branch:

 LDA X30,L1 // load return address
 BR X14 // to code for compareTo

 Th e method returns, with X6 determining which of the two elements is larger.
If X6 > 0 , then v[j] >v[j+1] , and we need to swap . Th us, to skip the swap ,
we need to test if X6 ≤ 0 . We also need to include the label for the return address:

 L1: CMP X6, XZR // test if X6 ≤ 0
 B.LE exit2 // go to exit2 if v[j] ≤ v[j+1]

 Th e LEGv8 code for compareTo is left as an exercise.

 Th e main changes for the Java versions of sort and swap are testing for null object
references and index out-of-bounds errors, and the extra method invocation to
give a more general compare. Th is method invocation is more expensive than a
C procedure call, since it requires a load, a conditional branch, a pair of chained
loads, and an indirect branch. As we see in Chapter 4 , dependent loads and indirect
branches can be relatively slow on modern processors. Th e increasing popularity
of Java suggests that many programmers today are willing to leverage the high
performance of modern processors to pay for error checking and code reuse.

 Hardware/
Software
Interface

2.15-26 2.15 Advanced Material: Compiling C and Interpreting Java

 Elaboration Although we test each reference to j and j + 1 to be sure that these
indices are within bounds, an assembly language programmer might look at the code
and reason as follows:

 1. Th e inner for loop is only executed if j ≤ 0 and since j + 1 > j , there is no
need to test j + 1 to see if it is less than 0.

 2. Since i takes on the values, 0, 1, 2, …, (data.length − 1) and since j takes on
the values i − 1, i − 2, …, 2, 1, 0, there is no need to test if j ≤ data.length
since the largest value j can be is data.length − 2.

 3. Following the same reasoning, there is no need to test whether j + 1 ≤
 data.length since the largest value of j +1 is data.length − 1.

 There are coding tricks in Chapter 2 and superscalar execution in Chapter 4 that
lower the effective cost of such bounds checking, but only high optimizing compilers
can reason this way. Note that if the compiler inlined the swap method into sort, many
checks would be unnecessary.

 Elaboration Look carefully at the code for swap in Figure 2.15.11 . See anything
wrong in the code, or at least in the explanation of how the code works? It implicitly
assumes that each Comparable element in v is 8 bytes long. Surely, you need much
more than 8 bytes for a complex subclass of Comparable , which could contain any
number of fi elds. Surprisingly, this code does work, because an important property of
Java’s semantics forces the use of the same, small representation for all variables,
fi elds, and array elements that belong to Comparable or its subclasses.

 Java types are divided into primitive types —the predefi ned types for numbers,
characters, and Booleans—and reference types —the built-in classes like String,
user-defi ned classes, and arrays. Values of reference types are pointers (also called
 references) to anonymous objects that are themselves allocated in the heap. For the
programmer, this means that assigning one variable to another does not create a new
object, but instead makes both variables refer to the same object. Because these
objects are anonymous, and programs therefore have no way to refer to them directly,
a program must use indirection through a variable to read or write any objects’ fi elds
(variables). Thus, because the data structure allocated for the array v consists entirely
of pointers, it is safe to assume they are all the same size, and the same swapping code
works for all of Comparable ’s subtypes.

 To write sorting and swapping functions for arrays of primitive types requires that
we write new versions of the functions, one for each type. This replication is for two
reasons. First, primitive type values do not include the references to dispatching tables
that we used on Comparables to determine at runtime how to compare values.
Second, primitive values come in different sizes: 1, 2, 4, or 8 bytes.

 The pervasive use of pointers in Java is elegant in its consistency, with the penalty
being a level of indirection and a requirement that objects be allocated on the heap.
Furthermore, in any language where the lifetimes of the heap-allocated anonymous
objects are independent of the lifetimes of the named variables, fi elds, and array
elements that reference them, programmers must deal with the problem of deciding
when it is safe to deallocate heap-allocated storage. Java’s designers chose to use

 2.15 Advanced Material: Compiling C and Interpreting Java 2.15-27

garbage collection. Of course, use of garbage collection rather than explicit user memory
management also improves program safety.

 C++ provides an interesting contrast. Although programmers can write essentially
the same pointer-manipulating solution in C++, there is another option. In C++,
programmers can elect to forgo the level of indirection and directly manipulate an array
of objects, rather than an array of pointers to those objects. To do so, C++ programmers
would typically use the template capability, which allows a class or function to be
parameterized by the type of data on which it acts. Templates, however, are compiled
using the equivalent of macro expansion. That is, if we declared an instance of sort
capable of sorting types X and Y, C++ would create two copies of the code for the
class: one for sort<X> and one for sort<Y>, each specialized accordingly. This solution
increases code size in exchange for making comparison faster (since the function calls
would not be indirect, and might even be subject to inline expansion). Of course, the
speed advantage would be canceled if swapping the objects required moving large
amounts of data instead of just single pointers. As always, the best design depends on
the details of the problem.

