
                             2.15         Advanced Material: Compiling C and 
Interpreting Java 

  Th is section gives a brief overview of how the C compiler works and how Java 
is executed. Because the compiler will signifi cantly aff ect the performance of a 
computer, understanding compiler technology today is critical to understanding 
performance. Keep in mind that the subject of compiler construction is usually 
taught in a one- or two-semester course, so our introduction will necessarily only 
touch on the basics. 

 Th e second part of this section, starting on page 2.15-15, is for readers interested 
in seeing how an objected-oriented language like Java executes on the LEGv8 
architecture. It shows the Java bytecodes used for interpretation and the LEGv8 code 
for the Java version of some of the C segments in prior sections, including Bubble 
Sort. It covers both the Java virtual machine and just-in-time (JIT) compilers. 

  Compiling C 
 Th is fi rst part of the section introduces the internal  anatomy  of a compiler. To 
start,  Figure 2.15.1    shows the structure of recent compilers, and we describe the 
optimizations in the order of the passes of that structure.     

 FIGURE 2.15.1      The structure of a modern optimizing compiler consists of a number of 
passes or phases.     Logically, each pass can be thought of as running to completion before the next occurs. 
In practice, some passes may handle one procedure at a time, essentially interleaving with another pass.    
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 To illustrate the concepts in this part of this section, we will use the C version of 
a  while  loop from page 95: 

  while (save[i] == k)  
                 i += 1;  

   The Front End 
 Th e function of the front end is to read in a source program; check the syntax 
and semantics; and translate the source program to an intermediate form that 
interprets most of the language-specifi c operation of the program. As we will see, 
intermediate forms are usually simple, and some are, in fact, similar to the Java 
bytecodes (see  Figure 2.15.8 ). 

 Th e front end is typically broken into four separate functions:

   1.      Scanning  reads in individual characters and creates a string of tokens. 
Examples of  tokens  are reserved words, names, operators, and punctuation 
symbols. In the above example, the token sequence is  while, (, save, 
[, i, ], ==, k, ), i, +=, 1 . A word like  while  is recognized as 
a reserved word in C, but  save ,  i , and  j  are recognized as names, and  1  is 
recognized as a number.  

  2.      Parsing  takes the token stream, ensures the syntax is correct, and produces 
an  abstract syntax tree , which is a representation of the syntactic structure of 
the program.  Figure 2.15.2    shows what the abstract syntax tree might look 
like for this program fragment.  

  3.      Semantic analysis  takes the abstract syntax tree and checks the program for 
semantic correctness. Semantic checks normally ensure that variables and 
types are properly declared and that the types of operators and objects match, 
a step called  type checking . During this process, a symbol table representing 
all the named objects—classes, variables, and functions—is usually created 
and used to type-check the program.  

  4.      Generation of the intermediate representation  (IR) takes the symbol table and 
the abstract syntax tree and generates the intermediate representation that is 
the output of the front end. Intermediate representations usually use simple 
operations on a small set of primitive types, such as integers, characters, and 
reals. Java bytecodes represent one type of intermediate form. In modern 
compilers, the most common intermediate form looks much like the LEGv8 
instruction set but with an infi nite number of virtual registers; later, we 
describe how to map these virtual registers to a fi nite set of real registers. 
 Figure 2.15.3    shows how our example might be represented in such an 
intermediate form.  

   Th e intermediate form specifi es the functionality of the program in a manner 
independent of the original source. Aft er this front end has created the intermediate 
form, the remaining passes are largely language independent. 
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   High-Level Optimizations 
 High-level optimizations are transformations that are done at something close to 
the source level. 

 Th e most common high-level transformation is probably  procedure inlining , 
which replaces a call to a function by the body of the function, substituting the 
caller’s arguments for the procedure’s parameters. Other high-level optimizations 
involve loop transformations that can reduce loop overhead, improve memory 
access, and exploit the hardware more eff ectively. For example, in loops that 
execute many iterations, such as those traditionally controlled by a  for  statement, 
the optimization of   loop-unrolling   is oft en useful. Loop-unrolling involves taking 
a loop, replicating the body multiple times, and executing the transformed loop 
fewer times. Loop-unrolling reduces the loop overhead and provides opportunities 
for many other optimizations. Other types of high-level transformations include 

    loop-unrolling       
   A technique to get more 
performance from loops 
that access arrays, in 
which multiple copies of 
the loop body are made 
and instructions from 
diff erent iterations are 
scheduled together.   
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 FIGURE 2.15.2      An abstract syntax tree for the  while  example.     Th e roots of the tree consist of 
the informational tokens such as numbers and names. Long chains of straight-line descendents are oft en 
omitted in constructing the tree.    
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sophisticated loop transformations such as interchanging nested loops and 
blocking loops to obtain better memory behavior; see  Chapter 5  for examples.    

  Local and Global Optimizations 
 Within the pass dedicated to local and global optimization, three classes of 
optimization are performed:

   1.      Local optimization  works within a single basic block. A local optimization 
pass is oft en run as a precursor and successor to global optimization to 
“clean up” the code before and aft er global optimization.  

  2.      Global optimization  works across multiple basic blocks; we will see an 
example of this shortly.  

  3.     Global  register allocation  allocates variables to registers for regions of the 
code. Register allocation is crucial to getting good performance in modern 
processors.  

   Several optimizations are performed both locally and globally, including 
common subexpression elimination, constant propagation, copy propagation, 
dead store elimination, and strength reduction. Let’s look at some simple examples 
of these optimizations. 

# comments are written like this--source code often included
# while (save[i] == k)
LDAR1,save#loads the starting address of save into
R1
LDUR R2,i
MUL R3,R2,8 # Multiply R2 by 8
ADD R4,R3,R1
LDUR R5,[R4,0] # load save[i]
LDUR R6,k
CMP R5,R6
B.NE endwhileloop
# i += 1
LDUR R6, i
ADDI R7,R6,1 # increment
STUR R7,i
B loop # next iteration
endwhileloop:

loop:

 FIGURE 2.15.3      The  while  loop example is shown using a typical intermediate representation.    
 In practice, the names  save ,  i , and  k  would be replaced by some sort of address, such as a reference to either the 
local stack pointer or a global pointer, and an off set, similar to the way  save[i]  is accessed. Note that the format 
of the LEGv8 instructions is diff erent from the rest of the chapter, because they represent intermediate representations 
here using  RXX  notation for registers.    
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  Common subexpression elimination  fi nds multiple instances of the same 
expression and replaces the second one by a reference to the fi rst. Consider, for 
example, a code segment to add 4 to an array element: 

  x[i] = x[i] + 4  

 Th e address calculation for  x[i]  occurs twice and is identical since neither the 
starting address of  x  nor the value of  i  changes. Th us, the calculation can be 
reused. Let’s look at the intermediate code for this fragment, since it allows several 
other optimizations to be performed. Th e unoptimized intermediate code is on the 
left . On the right is the optimized code, using common subexpression elimination 
to replace the second address calculation with the fi rst. Note that the register 
allocation has not yet occurred, so the compiler is using virtual register numbers 
like  R100  here. 

  // x[i] + 4       // x[i] + 4  
  LDA R100,x       LDA R100,x  
  LDUR R101,i       LDUR R101,i  
  MUL R102,R101,8       LSL R102,R101,#3  
  ADD R103,R100,R102       ADD R103,R100,R102  
  LDUR R104, [R103, #0]       LDUR R104, [R103, #0]  
  //       // value of x[i] is in R104  
  ADD R105, R104,4       ADD R105, R104,4  
  LDUR R107,i       STUR R105, [R103, #0]  
  MULL R108,R107,8  
  ADD R109,R106,R107  
  STUR R105,[R109, #0]  

 If the same optimization were possible across two basic blocks, it would then be 
an instance of  global common subexpression elimination.  

 Let’s consider some of the other optimizations:

   ■      Strength reduction  replaces complex operations by simpler ones and can be 
applied to this code segment, replacing the MULT by a shift  left .  

  ■      Constant propagation  and its sibling  constant folding  fi nd constants in code 
and propagate them, collapsing constant values whenever possible.  

  ■      Copy propagation  propagates values that are simple copies, eliminating the 
need to reload values and possibly enabling other optimizations, such as 
common subexpression elimination.  

  ■      Dead store elimination  fi nds stores to values that are not used again and 
eliminates the store; its “cousin” is  dead code elimination , which fi nds unused 
code—code that cannot aff ect the result of the program—and eliminates it. 
With the heavy use of macros, templates, and the similar techniques designed 
to reuse code in high-level languages, dead code occurs surprisingly oft en.  
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   Compilers must be  conservative . Th e fi rst task of a compiler is to produce correct 
code; its second task is usually to produce fast code, although other factors, such as 
code size, may sometimes be important as well. Code that is fast but incorrect—for 
any possible combination of inputs—is simply wrong. Th us, when we say a compiler 
is “conservative,” we mean that it performs an optimization only if it knows with 
100% certainty that, no matter what the inputs, the code will perform as the user 
wrote it. Since most compilers translate and optimize one function or procedure 
at a time, most compilers, especially at lower optimization levels, assume the worst 
about function calls and about their own parameters.  

    Programmers concerned about the performance of critical loops, especially in real-
time or embedded applications, can fi nd themselves staring at the assembly language 
produced by a compiler and wondering why the compiler failed to perform some 
global optimization or to allocate a variable to a register throughout a loop. Th e 
answer oft en lies in the dictate that the compiler be conservative. Th e opportunity for 
improving the code may seem obvious to the programmer, but then the programmer 
oft en has knowledge that the compiler does not have, such as the absence of aliasing 
between two pointers or the absence of side eff ects by a function call. Th e compiler 
may indeed be able to perform the transformation with a little help, which could 
eliminate the worst-case behavior that it must assume. Th is insight also illustrates 
an important observation: programmers who use pointers to try to improve 
performance in accessing variables, especially pointers to values on the stack that 
also have names as variables or as elements of arrays, are likely to disable many 
compiler optimizations. Th e result is that the lower-level pointer code may run no 
better, or perhaps even worse, than the higher-level code optimized by the compiler.   

 Understanding 
Program 
Performance 

    Global Code Optimizations 

 Many global code optimizations have the same aims as those used in the local 
case, including common subexpression elimination, constant propagation, copy 
propagation, and dead store and dead code elimination. 

 Th ere are two other important global optimizations: code motion and induction 
variable elimination. Both are loop optimizations; that is, they are aimed at code 
in loops.  Code motion  fi nds code that is loop invariant: a particular piece of 
code computes the same value on every iteration of the loop and, hence, may be 
computed once outside the loop.  Induction variable elimination  is a combination of 
transformations that reduce overhead on indexing arrays, essentially replacing array 
indexing with pointer accesses. Rather than examine induction variable elimination 
in depth, we point the reader to  Section 2.14 , which compares the use of array 
indexing and pointers; for most loops, a modern optimizing compiler can perform 
the transformation from the more obvious array code to the faster pointer code. 
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   Implementing Local Optimizations 

 Local optimizations are implemented on basic blocks by scanning the basic block 
in instruction execution order, looking for optimization opportunities. In the 
assignment statement example on page 2.15-6, the duplication of the entire address 
calculation is recognized by a series of sequential passes over the code. Here is how 
the process might proceed, including a description of the checks that are needed:

   1.     Determine that the two  LDA  operations return the same result by observing 
that the operand  x  is the same and that the value of its address has not been 
changed between the two  LDA  operations.  

  2.     Replace all uses of  R106  in the basic block by  R101 .  

  3.     Observe that  i  cannot change between the two  LDURs  that reference it. So 
replace all uses of  R107  with  R101 .  

  4.     Observe that the  MUL  instructions now have the same input operands, so 
that  R108  may be replaced by  R102 .  

  5.     Observe that now the two  ADD  instructions have identical input operands 
( R100  and  R102 ), so replace the  R109  with  R103 .  

  6.     Use dead store code elimination to delete the second set of  LDA,LDUR, 
MUL , and  ADD  instructions since their results are unused.  

   Th roughout this process, we need to know when two instances of an operand 
have the same value. Th is is easy to determine when they refer to virtual registers, 
since our intermediate representation uses such registers only once, but the 
problem can be trickier when the operands are variables in memory, even though 
we are only considering references within a basic block. 

 It is reasonably easy for the compiler to make the common subexpression 
elimination determination in a conservative fashion in this case; as we will see in 
the next subsection, this is more diffi  cult when branches intervene. 

   Implementing Global Optimizations 

 To understand the challenge of implementing global optimizations, let’s consider 
a few examples:

   ■     Consider the case of an opportunity for common subexpression elimination, 
say, of an IR statement like  ADD Rx ,  R20 ,  R50 . To determine whether two 
such statements compute the same value, we must determine whether the 
values of  R20  and  R50  are identical in the two statements. In practice, this 
means that the values of  R20  and  R50  have not changed between the fi rst 
statement and the second. For a single basic block, this is easy to decide; it is 
more diffi  cult for a more complex program structure involving multiple basic 
blocks and branches.  

  ■     Consider the second  LDUR  of  i  into  R107  within the earlier example: how do 
we know whether its value is used again? If we consider only a single basic 
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block, and we know that all uses of  R107  are within that block, it is easy to see. 
As optimization proceeds, however, common subexpression elimination and 
copy propagation may create other uses of a value. Determining that a value is 
unused and the code is dead is more diffi  cult in the case of multiple basic blocks.  

  ■     Finally, consider the load of  k  in our loop, which is a candidate for code 
motion. In this simple example, we might argue that it is easy to see that  k  
is not changed in the loop and is, hence, loop invariant. Imagine, however, a 
more complex loop with multiple nestings and  if  statements within the body. 
Determining that the load of  k  is loop invariant is harder in such a case.  

   Th e information we need to perform these global optimizations is similar: we 
need to know where each operand in an IR statement could have been changed or 
 defi ned  (use-defi nition information). Th e dual of this information is also needed: 
that is, fi nding all the uses of that changed operand (defi nition-use information). 
 Data fl ow analysis  obtains both types of information. 

 Global optimizations and data fl ow analysis operate on a  control fl ow graph , where 
the nodes represent basic blocks and the arcs represent control fl ow between basic 
blocks.  Figure 2.15.4    shows the control fl ow graph for our simple loop example, 
with one important transformation introduced. We describe the transformation in 
the caption, but see if you can discover it, and why it was done, on your own! 

 FIGURE 2.15.4      A control fl ow graph for the  while  loop example.     Each node represents a basic 
block, which terminates with a branch or by sequential fall-through into another basic block that is also 
the target of a branch. Th e IR statements have been numbered for ease in referring to them. Th e important 
transformation performed was to move the  while  test and conditional branch to the end. Th is eliminates the 
unconditional branch that was formerly inside the loop and places it before the loop. Th is transformation 
is so important that many compilers do it during the generation of the IR. Th e  MUL  was also replaced with 
(“strength-reduced to”) an  SLL .    

9.     LDUR R6, i
10.   ADDI R7,R6, #1
11.   STUR R7,i

1.   LDA R1,save
2.   LDUR R2,i
3.   LSL R3,R2, #3
4.   ADD R4,R3, R1
5.   LDUR R5,[R4,0]
6.   LDUR R6,k
7.   CMP R5,R6
8.   B.EQ,startwhileloop
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 Suppose we have computed the use-defi nition information for the control 
fl ow graph in  Figure 2.15.4 . How does this information allow us to perform code 
motion? Consider IR statements number 1 and 6: in both cases, the use-defi nition 
information tells us that there are no defi nitions (changes) of the operands of these 
statements within the loop. Th us, these IR statements can be moved outside the 
loop. Notice that if the  LDA  of  save  and the  LDUR  of  k  are executed once, just prior 
to the loop entrance, the computational eff ect is the same, but the program now 
runs faster since these two statements are outside the loop. In contrast, consider 
IR statement 2, which loads the value of  i . Th e defi nitions of  i  that aff ect this 
statement are both outside the loop, where  i  is initially defi ned, and inside the loop 
in statement 10 where it is stored. Hence, this statement is not loop invariant. 

  Figure 2.15.5    shows the code aft er performing both code motion and induction 
variable elimination, which simplifi es the address calculation. Th e variable  i  can 
still be register allocated, eliminating the need to load and store it every time, and 
we will see how this is done in the next subsection. 

 Before we turn to register allocation, we need to mention a caveat that also 
illustrates the complexity and diffi  culty of optimizers. Remember that the compiler 
must be cautious. To be conservative, a compiler must consider the following 
question: Is there  any way  that the variable  k  could possibly ever change in this 
loop? Unfortunately, there is one way. Suppose that the variable  k  and the variable 
 i  actually refer to the same memory location, which could happen if they were 
accessed by pointers or reference parameters. 

 FIGURE 2.15.5      The control fl ow graph showing the representation of the  while  loop 
example after code motion and induction variable elimination.     Th e number of instructions in 
the inner loop has been reduced from 11 to 7.    

LDUR R2,i
ADDI R7,R6,#1
ADDI R4,R4,#8
STUR R7,i

LDA R1,save
LDUR R6,k
LDUR R2,i
LSL R3,R2,#3
ADD R4,R3,R1

LDUR R5,[R4,0]
CMP R5,R6
B.EQ startwhileloop
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 I am sure that many readers are saying, “Well, that would certainly be a stupid 
piece of code!” Alas, this response is not open to the compiler, which must 
translate the code as it is written. Recall too that the aliasing information must 
also be conservative; thus, compilers oft en fi nd themselves negating optimization 
opportunities because of a possible alias that exists in one place in the code or 
because of incomplete information about aliasing. 

    Register Allocation 
 Register allocation is perhaps the most important optimization for modern 
load-store architectures. Eliminating a load or a store gets rid of an instruction. 
Furthermore, register allocation enhances the value of other optimizations, such as 
common subexpression elimination. Fortunately, the trend toward larger register 
counts in modern architectures has made register allocation simpler and more 
eff ective. Register allocation is done on both a local basis and a global basis, that is, 
across multiple basic blocks but within a single function. Local register allocation 
is usually done late in compilation, as the fi nal code is generated. Our focus here is 
on the more challenging and more opportunistic global register allocation. 

 Modern global register allocation uses a region-based approach, where a 
region (sometimes called a  live range ) represents a section of code during which 
a particular variable could be allocated to a particular register. How is a region 
selected? Th e process is iterative:

   1.     Choose a defi nition (change) of a variable in a given basic block; add that 
block to the region.  

  2.     Find any uses of that defi nition, which is a data fl ow analysis problem; add 
any basic blocks that contain such uses, as well as any basic block that the 
value passes through to reach a use, to the region.  

  3.     Find any other defi nitions that also can aff ect a use found in the previous 
step and add the basic blocks containing those defi nitions, as well as the 
blocks the defi nitions pass through to reach a use, to the region.  

  4.     Repeat steps 2 and 3 using the defi nitions discovered in step 3 until 
convergence.  

   Th e set of basic blocks found by this technique has a special property: if the 
designated variable is allocated to a register in all these basic blocks, then there is 
no need for loading and storing the variable. 

 Modern global register allocators start by constructing the regions for every 
virtual register in a function. Once the regions are constructed, the key question 
is how to allocate a register to each region: the challenge is that certain regions 
overlap and may not use the same register. Regions that do not overlap (i.e., 
share no common basic blocks) can share the same register. One way to record 
the interference among regions is with an  interference graph , where each node 
represents a region, and the arcs between nodes represent that the regions have 
some basic blocks in common. 
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 Once an interference graph has been constructed, the problem of allocating 
registers is equivalent to a famous problem called  graph coloring:  fi nd a color for 
each node in a graph such that no two adjacent nodes have the same color. If the 
number of colors equals the number of registers, then coloring an interference 
graph is equivalent to allocating a register for each region! Th is insight was the 
initial motivation for the allocation method now known as region-based allocation, 
but originally called the graph-coloring approach.  Figure 2.15.6    shows the fl ow 
graph representation of the  while  loop example aft er register allocation. 

 What happens if the graph cannot be colored using the number of registers 
available? Th e allocator must spill registers until it can complete the coloring. By 
doing the coloring based on a priority function that takes into account the number 
of memory references saved and the cost of tying up the register, the allocator 
attempts to avoid spilling for the most important candidates. 

 Spilling is equivalent to splitting up a region (or live range); if the region is split, 
fewer other regions will interfere with the two separate nodes representing the 
original region. A process of splitting regions and successive coloring is used to 
allow the allocation process to complete, at which point all candidates will have 
been allocated a register. Of course, whenever a region is split, loads and stores 
must be introduced to get the value from memory or to store it there. Th e location 
chosen to split a region must balance the cost of the loads and stores that must be 
introduced against the advantage of freeing up a register and reducing the number 
of interferences. 

 FIGURE 2.15.6      The control fl ow graph showing the representation of the  while  loop 
example after code motion and induction variable elimination and register allocation, 
using the LEGv8 register names.     Th e number of IR statements in the inner loop has now dropped to 
only fi ve from seven before register allocation and 11 before any global optimizations. Th e value of  i  resides 
in  X11  at the end of the loop and may need to be stored eventually to maintain the program semantics. If  i  
were unused aft er the loop, not only could the store be avoided, but also the increment inside the loop could 
be eliminated!    

ADDI X11,X11,#1
ADDI X13,X13,#8

LDA X9,save
LDUR X10,k
LDUR X11,i
LSL X12,X11,#3
ADD X13,X12,X9

LDUR X12,[X13,0]
CMP X12,X10
B.EQ startwhileloop
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 Modern register allocators are incredibly eff ective in using the large register 
counts available in modern processors. In many programs, the eff ectiveness of 
register allocation is limited not by the availability of registers but by the possibilities 
of aliasing that cause the compiler to be conservative in its choice of candidates. 

   Code Generation 
 Th e fi nal steps of the compiler are code generation and assembly. Most compilers 
do not use a stand-alone assembler that accepts assembly language source code; 
to save time, they instead perform most of the same functions: fi lling in symbolic 
values and generating the binary code as the last stage of code generation. 

 In modern processors, code generation is reasonably straightforward, since 
the simple architectures make the choice of instruction relatively obvious. Code 
generation is more complex for the more complicated architectures, such as the 
x86, since multiple IR instructions may collapse into a single machine instruction. 
In modern compilers, this compilation process uses pattern matching with either a 
tree-based pattern matcher or a pattern matcher driven by a parser. 

 During code generation, the fi nal stages of machine-dependent optimization 
are also performed. Th ese include some constant folding optimizations, as well as 
localized instruction scheduling (see  Chapter 4 ). 

   Optimization Summary 
  Figure 2.15.7    gives examples of typical optimizations, and the last column 

indicates where the optimization is performed in the gcc compiler. It is sometimes 
diffi  cult to separate some of the simpler optimizations—local and processor-
dependent optimizations—from transformations done in the code generator, and 
some optimizations are done multiple times, especially local optimizations, which 
may be performed before and aft er global optimization as well as during code 
generation.   

    Today, essentially all programming for desktop and server applications is done in 
high-level languages, as is most programming for embedded applications. Th is 
development means that since most instructions executed are the output of a 
compiler, an instruction set architecture is mainly a compiler target. With  Moore’s 
Law  comes the temptation of adding sophisticated operations in an instruction 
set. Th e challenge is that they may not exactly match what the compiler needs to 
produce or may be so general that they aren’t fast. For example, consider special 
loop instructions found in some computers. Suppose that instead of decrementing 
by one, the compiler wanted to increment by four, or instead of branching on not 
equal zero, the compiler wanted to branch if the index was less than or equal to the 
limit. Th e loop instruction may be a mismatch. When faced with such objections, 

 Hardware/
Software 
Interface 
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    Elaboration        Some more sophisticated compilers, and many research compilers, use 
an analysis technique called  interprocedural analysis  to obtain more information about 
functions and how they are called. Interprocedural analysis attempts to discover what 
properties remain true across a function call. For example, we might discover that a 
function call can never change any global variables, which might be useful in optimizing 
a loop that calls such a function. Such information is called  may-information  or  fl ow-
insensitive information  and can be obtained reasonably effi ciently, although analyzing 
a call to a function F requires analyzing all the functions that F calls, which makes 
the process somewhat time consuming for large programs. A more costly property to 
discover is that a function  must  always change some variable; such information is called 
 must-information  or  fl ow-sensitive information . Recall the dictate to be conservative: 
may-information can never be used as must-information—just because a function  may  
change a variable does not mean that it  must  change it. It is conservative, however, to 
use the negation of may-information, so the compiler can rely on the fact that a function 
 will  never change a variable in optimizations around the call site of that function. 

the instruction set designer might next generalize the operation, adding another 
operand to specify the increment and perhaps an option on which branch condition 
to use. Th en the danger is that a common case, say, incrementing by one, will be 
slower than a sequence of simple operations.       

 FIGURE 2.15.7      Major types of optimizations and explanation of each class.     Th e third column shows when these occur at 
diff erent levels of optimization in gcc. Th e GNU organization calls the three optimization levels medium (O1), full (O2), and full with integration 
of small procedures (O3).    
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      One of the most important uses of interprocedural analysis is to obtain so-
called alias information. An  alias  occurs when two names may designate the same 
variable. For example, it is quite helpful to know that two pointers passed to a 
function may never designate the same variable. Alias information is usually fl ow-
insensitive and must be used conservatively. 

   Interpreting Java 
 Th is second part of the section is for readers interested in seeing how an   object-
oriented language   like Java executes on an LEGv8 architecture. It shows the Java 
bytecodes used for interpretation and the LEGv8 code for the Java version of some 
of the C segments in prior sections, including Bubble Sort.   

 Let’s quickly review the Java lingo to make sure we are all on the same page. Th e 
big idea of object-oriented programming is for programmers to think in terms 
of abstract objects, and operations are associated with each  type  of object. New 
types can oft en be thought of as refi nements to existing types, and so the new types 
use some operations for the existing types without change. Th e hope is that the 
programmer thinks at a higher level, and that code can be reused more readily if 
the programmer implements the common operations on many diff erent types. 

 Th is diff erent perspective led to a diff erent set of terms. Th e type of an object 
is a  class , which is the defi nition of a new data type together with the operations 
that are defi ned to work on that data type. A particular object is then an  instance  
of a class, and creating an object from a class is called  instantiation . Th e operations 
in a class are called  methods , which are similar to C procedures. Rather than call 
a procedure as in C, you  invoke  a method in Java. Th e other members of a class 
are  fi elds , which correspond to variables in C. Variables inside objects are called 
 instance fi elds . Rather than access a structure with a pointer, Java uses an  object 
reference  to access an object. Th e syntax for method invocation is  x.y , where  x  is 
an object reference and  y  is the method name. 

 Th e parent–child relationship between older and newer classes is captured by 
the verb “extends”: a child class  extends  (or subclasses) a parent class. Th e child 
class typically will redefi ne some of the methods found in the parent to match the 
new data type. Some methods work fi ne, and the child class  inherits  those methods. 

 To reduce the number of errors associated with pointers and explicit memory 
deallocation, Java automatically frees unused storage, using a separate garbage 
collector that frees memory when it is full. Hence,  new  creates a new instance of a 
dynamic object on the heap, but there is no  free  in Java. Java also requires array 
bounds to be checked at runtime to catch another class of errors that can occur in 
C programs. 

    object-oriented 
language       
   A programming language 
that is oriented around 
objects rather than 
actions, or data versus 
logic.   
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   Interpretation 
 As mentioned before, Java programs are distributed as Java bytecodes, and the Java 
Virtual Machine (JVM) executes Java byte codes. Th e JVM understands a binary 
format called the  class fi le  format. A class fi le is a stream of bytes for a single class, 
containing a table of valid methods with their bytecodes, a pool of constants that 
acts in part as a symbol table, and other information such as the parent class of this 
class. 

 When the JVM is fi rst started, it looks for the class method  main . To start any 
Java class, the JVM dynamically loads, links, and initializes a class. Th e JVM loads 
a class by fi rst fi nding the binary representation of the proper class (class fi le) and 
then creating a class from that binary representation. Linking combines the class 
into the runtime state of the JVM so that it can be executed. Finally, it executes the 
class initialization method that is included in every class. 

  Figure 2.15.8    shows Java bytecodes and their corresponding LEGv8 instructions, 
illustrating fi ve major diff erences between the two:

   1.     To simplify compilation, Java uses a stack instead of registers for operands. 
Operands are pushed on the stack, operated on, and then popped off  the 
stack.  

  2.     Th e designers of the JVM were concerned about code size, so bytecodes vary 
in length between one and fi ve bytes, versus the four-byte, fi xed-size LEGv8 
instructions. To save space, the JVM even has redundant instructions of 
varying lengths whose only diff erence is size of the immediate. Th is decision 
illustrates a code size variation of our third design principle: make the 
common case  small .  

  3.     Th e JVM has safety features embedded in the architecture. For example, 
array data transfer instructions check to be sure that the fi rst operand is a 
reference and that the second index operand is within bounds.  

  4.     To allow garbage collectors to fi nd all live pointers, the JVM uses diff erent 
instructions to operate on addresses versus integers so that the JVM can 
know what operands contain addresses. LEGv8 generally lumps integers and 
addresses together.  

  5.     Finally, unlike LEGv8, Java bytecodes include Java-specifi c instructions that 
perform complex operations, like allocating an array on the heap or invoking 
a method.   
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 FIGURE 2.15.8      Java bytecode architecture versus LEGv8.     Although many bytecodes are simple, those in the last half-dozen rows 
above are complex and specifi c to Java. Bytecodes are one to fi ve bytes in length, hence their name. Th e Java mnemonics uses the prefi x  i  for 
32-bit integer,  a  for reference (address),  s  for 16-bit integers (short), and  b  for 8-bit bytes. We use  I8  for an 8-bit constant and  I16  for a 
16-bit constant. LEGv8 uses registers for operands, but the JVM uses a stack. Th e compiler knows the maximum size of the operand stack for 
each method and simply allocates space for it in the current frame. Here is the notation in the Meaning column:  TOS : top of stack;  NOS:  next 
position below  TOS ;  NNOS : next position below  NOS ;  pop : remove  TOS ;  pop2 : remove  TOS  and  NOS ; and  push : add a position to the 
stack.  *NOS  and  *NNOS  mean access the memory location pointed to by the address in the stack at those positions.  Const[]  refers to the 
runtime constant pool of a class created by the JVM, and  Frame[]  refers to the variables of the local method frame. Th e only missing LEGv8 
instructions from Figure 2.1 (or LEGv8 pseudoinstructions) are  FOR, ANDI, ORRI, CMPI, MOVK  and  MOVZ . Th e missing Java 
bytecodes from Figure 2.1 are a few arithmetic and logical operators, some tricky stack management, compares to 0 and branch, support for 
branch tables, type conversions, more variations of the complex, Java-specifi c instructions plus operations on fl oating-point data, 64-bit integers 
(longs), and 16-bit characters.    

Java bytecodeOperationCategory
Size 
(bits) Meaning

ARMv8 
instr. 

NOS=TOS+NOS; popADD8ddaiddaArithmetic

NOS=TOS–NOS; popSUB8busitcartbus

Frame[I8a]= Frame[I8a] + I8bADDI8b8Ia8Icniitnemercni

Data transfer load local integer/address iload I8/aload I8 16 LDUR TOS=Frame[I8]

load local integer/address iload_/aload_{0,1,2,3} 8 LDUR TOS=Frame[{0,1,2,3}]

store local integer/address istore I8/astore I8 16 STUR Frame[I8]=TOS; pop

load integer/address from array iaload/aaload 8 LDUR NOS=*NOS[TOS]; pop

store integer/address into array iastore/aastore 8 STUR *NNOS[NOS]=TOS; pop2

pop;]SOT[SON*=SONLDURH8daolasyarramorfflahdaol

2pop;SOT=]SON[SONN*STURH8erotsasyarraotniflaherots

pop;]SOT[SON*=SONLDURB8daolabyarramorfetybdaol

2pop;SOT=]SON[SONN*STURB8erotsabyarraotnietyberots

load immediate bipush I8, sipush I16 16, 24 ADDI push; TOS=I8 or I16

load immediate iconst_{–1,0,1,2,3,4,5} 8 ADDI push; TOS={–1,0,1,2,3,4,5}

pop;SON&SOT=SONAND8dnaidnalacigoL

pop;SON|SOT=SONORR8roiro

pop;SOT<<SON=SONLSL8lhsitfeltfihs

pop;SOT>>SON=SONLSR8rhsuithgirtfihs

Conditional 
branch

branch on equal if_icompeq I16 24 CBZ if TOS == NOS, go to I16; pop2

branch on not equal if_icompne I16 24 CBNZ if TOS != NOS, go to I16; pop2

2pop;61Iotog,SON}=>,>,=<,<{SOTfiCMP4261I}eg,tg,el,tl{pmoci_fierapmoc

Unconditional 
jump

61IotogB4261Iotogpmuj

BR8nruteri,ternruter

3+CP=SOT;hsup;61IotogBL4261Irsjenituorbusotpmuj

Stack 
management

remove from stack pop, pop2 8 pop, pop2

SON=SOT;hsup8pudkcatsnoetacilpud

T=SOT;SOT=SON;SON=T8pawskcatsnosnoitisop2potpaws

Safety check check for null reference ifnull I16, ifnotnull I16 24 if TOS {==,!=} null, go to I16

get length of array arraylength 8 push; TOS = length of array

check if object a type instanceof I16 24 TOS = 1 if TOS matches type of 
Const[I16]; TOS = 0 otherwise

on type
Invocation invoke method invokevirtual I16 24 Invoke method in Const[I16], dispatching 

Allocation create new class instance new I16 24 Allocate object type Const[I16] on heap

create new array newarray I16 24 Allocate array type Const[I16] on heap
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    Compiling a  while  Loop in Java Using Bytecodes  

     Compile the  while  loop from page 95, this time using Java bytecodes: 

  while (save[i] == k)  
                   i += 1;  

 Assume that  i ,  k , and  save  are the fi rst three local variables. Show the 
addresses of the bytecodes. Th e LEGv8 version of the C loop in  Figure 2.15.3  
took seven instructions and 28 bytes. How big is the bytecode version?  

   Th e fi rst step is to put the array reference in  save  on the stack: 

  0 aload_3 // Push local variable 3 (save[]) onto stack  

 Th is 1-byte instruction informs the JVM that an address in local variable 3 is 
being put on the stack. Th e 0 on the left  of this instruction is the byte address 
of this fi rst instruction; bytecodes for each method start at 0. Th e next step is 
to put the index on the stack: 

  1 iload_1 // Push local variable 1 (i) onto stack  

 Like the prior instruction, this 1-byte instruction is a short version of a more 
general instruction that takes 2 bytes to load a local variable onto the stack. Th e 
next instruction is to get the value from the array element: 

  2 iaload // Put array element (save[i]) onto stack  

 Th is 1-byte instruction checks the prior two operands, pops them off  the stack, 
and then puts the value of the desired array element onto the new top of the 
stack. Next, we place  k  on the stack: 

  3 iload_2 // Push local variable 2 (k) onto stack  

 We are now ready for the  while  test: 

  4 if_icompne, Exit // Compare and exit if not equal  

 Th is 3-byte instruction compares the top two elements of the stack, pops them 
off  the stack, and branches if they are not equal. We are fi nally prepared for the 
body of the loop: 

  7 iinc, 1, 1 // Increment local variable 1 by 1 (i+=1)  

EXAMPLE

ANSWER
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 Th is unusual 3-byte instruction increments a local variable by 1 without using 
the operand stack, an optimization that again saves space. Finally, we return to 
the top of the loop with a 3-byte branch: 

  10 go to 0 // Go to top of Loop (byte address 0)  

 Th us, the bytecode version takes seven instructions and 13 bytes, almost 
half the size of the LEGv8 C code. (As before, we can optimize this code to 
branch less.) 

         Compiling for Java 
 Since Java is derived from C and Java has the same built-in types as C, the assignment 
statement examples in   Sections 2.2 to 2.6                              are the same in Java as they are in C. Th e 
same is true for the  if  statement example in  Section 2.7 . 

 Th e Java version of the  while  loop is diff erent, however. Th e designers of C 
leave it up to the programmers to be sure that their code does not exceed the array 
bounds. Th e designers of Java wanted to catch array bound bugs, and thus require 
the compiler to check for such violations. To check bounds, the compiler needs to 
know what they are. Java includes an extra doubleword in every array that holds 
the upper bound. Th e lower bound is defi ned as 0.

    Compiling a  while  Loop in Java  

     Modify the LEGv8 code for the  while  loop on page 95 to include the array 
bounds checks that are required by Java. Assume that the length of the array is 
located just before the fi rst element of the array.  

   Let’s assume that Java arrays reserved the fi rst two doublewords of arrays before 
the data start. We’ll see the use of the fi rst doubleword soon, but the second 
doubleword has the array length. Before we enter the loop, let’s load the length 
of the array into a temporary register: 

  LDUR     X11, [X25, #8]            // Temp reg X11 = length of 
array save  

 Before we multiply  i  by 8, we must test to see if it’s less than 0 or greater 
than the last element of the array. Th e fi rst step is to check if  i  is less than 0: 

  Loop: CMP     X22, XZR       // Test if i < 0  
  B.LT IndexOutOfBounds       // if i<0, goto Error  

 Since the array starts at 0, the index of the last array element is one less than the 
length of the array. Th us, the test of the upper array bound is to be sure that  i  is 

EXAMPLE

ANSWER
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less than the length of the array. Th us, the second step is to branch to an error 
if it’s greater than or equal to  length . 

  CMP     X22,X11          // compare i to length  
  B.GE,IndexOutOfBounds        //if i>=length, goto Error  

 Th e next two lines of the LEGv8  while  loop are unchanged from the C version: 

  LSL     X10,X22, #3       // Temp reg X10 = 8 * i  
  ADD     X10, X10,X25       // X10 = address of save[i]  

 We need to account for the fi rst 16 bytes of an array that are reserved in Java. 
We do that by changing the address fi eld of the load from 0 to 16  : 

  LDUR X9, [X10,#16]       // Temp reg X9 = save[i]  

 Th e rest of the LEGv8 code from the C  while  loop is fi ne as is: 

  SUB     X11,X9,X24       // X11 = save[i] - k  
  CBNZ       X11 Exit       // go to Exit if save[i] ≠ (X11≠0)  
  ADD       X22,X22,1       // i = i + 1  
  B       Loop       // go to Loop  
  Exit:  

 (See the exercises for an optimization of this sequence.) 

         Invoking Methods in Java 
 Th e compiler picks the appropriate method depending on the type of object. In 
a few cases, it is unambiguous, and the method can be invoked with no more 
overhead than a C procedure. In general, however, the compiler knows only that 
a given variable contains a pointer to an object that belongs to some subtype of a 
general class. Since it doesn’t know at compile time which subclass the object is, 
and thus which method should be invoked, the compiler will generate code that 
fi rst tests to be sure the pointer isn’t null and then uses the code to load a pointer to 
a table with all the legal methods for that type. Th e fi rst doubleword of the object 
has the method table address, which is why Java arrays reserve two doublewords. 
Let’s say it’s using the fi ft h method that was declared for that class. (Th e method 
order is the same for all subclasses.) Th e compiler then takes the fi ft h address from 
that table and invokes the method at that address. 

 Th e cost of object orientation in general is that method invocation takes fi ve steps:

   1.     A conditional branch to be sure that the pointer to the object is valid;  

  2.     A load to get the address of the table of available methods;  

  3.     Another load to get the address of the proper method;  
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  4.     Placing a return address into the return register; and fi nally  

  5.     A branch register to invoke the method.  

     A Sort Example in Java 
  Figure 2.15.9    shows the Java version of exchange sort. A simple diff erence is that 
there is no need to pass the length of the array as a separate parameter, since Java 
arrays include their length:  v.length  denotes the length of  v . 

 A more signifi cant diff erence is that Java methods are prepended with keywords 
not found in the C procedures. Th e  sort  method is declared  public static  
while  swap  is declared  protected static .   Public   means that  sort  can be 
invoked from any other method, while   protected   means  swap  can only be called by 
other methods within the same   package   and from methods within derived classes. 
A   static method   is another name for a class method—methods that perform 
class-wide operations and do not apply to an individual object. Static methods are 
essentially the same as C procedures.         

 Th is straightforward translation from C into static methods means there is no 
ambiguity on method invocation, and so it can be just as effi  cient as C. It also is limited 
to sorting integers, which means a diff erent sort has to be written for each data type. 

 To demonstrate the object orientation of Java,  Figure 2.15.10    shows the 
new version with the changes highlighted. First, we declare  v  to be of the type 
 Comparable  and replace  v[j] > v[j + 1]  with an invocation of  compareTo . 
By changing  v  to this new class, we can use this code to  sort  many data types. 

    public          A Java keyword 
that allows a method to 
be invoked by any other 
method.   

    protected          A Java key 
word that restricts 
invocation of a method 
to other methods in that 
package.   

    package          Basically a 
directory that contains a 
group of related classes.   

    static method          A method 
that applies to the whole 
class rather than to an 
individual object. It is 
unrelated to static in C.   

 FIGURE 2.15.9      An initial Java procedure that performs a sort on the array v.     Changes from 
Figures 2.24 and 2.26 are highlighted.    

public class sort {

   public static void sort (int[] v) {

  for (int i = 0; i < v.length; i += 1) {

   for (int j = i - 1; j >= 0 && v[j] > v[j + 1]; j –= 1) {

 swap(v, j);

   }

 }

   protected static void swap(int[] v, int k) {

  int temp = v[k];

  v[k] = v[k+1];

  v[k+1] = temp;

   }}
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 Th e method  compareTo  compares two elements and returns a value greater than 
0 if the parameter is larger than the object, 0 if it is equal, and a negative number 
if it is smaller than the object. Th ese two changes generalize the code so it can 
sort integers, characters, strings, and so on, if there are subclasses of  Comparable  
with each of these types and if there is a version of  compareTo  for each type. 
For pedagogic purposes, we redefi ne the class  Comparable  and the method 
 compareTo  here to compare integers. Th e actual defi nition of  Comparable  in the 
Java library is considerably diff erent. 

 Starting from the LEGv8 code that we generated for C, we show what changes 
we made to create the LEGv8 code for Java. 

 For  swap , the only signifi cant diff erences are that we must check to be sure the 
object reference is not null and that each array reference is within bounds. Th e fi rst 
test checks that the address in the fi rst parameter is not zero: 

  swap: CBZ     X0,NullPointer                      // if X0==0,goto Error  

 FIGURE 2.15.10      A revised Java procedure that sorts on the array v that can take on more types.     Changes from  Figure 
2.15.9  are highlighted.    

public class sort {

   public static void sort (Comparable[] v) {

  for (int i = 0; i < v.length; i += 1) {

       for (int j = i – 1; j >= 0 && v[j].compareTo(v[j + 1]); 

 

j –= 1) {

                    swap(v, j);

           }

   }

     

   protected static void swap(Comparable[] v, int k) {

  Comparable temp = v[k];

  v[k] = v[k+1];

  v[k+1] = temp;

   }}

public class Comparable {

  public int(compareTo (int x)

  { return value – x; }

  public int value;

}
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 Next, we load the length of v into a register and check that index  k  is OK. 

  LDUR X11,[X0,#8]        // Temp reg X11 = length of array v  
  CMP X1,XZR       // Compare k to 0  
  B.LT IndexOutOfBounds       // if k < 0, goto Error  
  CMP X1,X11       // Compare k to length  
  B.GE IndexOutOfBounds       // if k >= length, goto Error  

 Th is check is followed by a check that  k+1  is within bounds. 

  ADDI X10,X1,#1       // Temp reg X10 = k+1  
  CMP X10,XZR       // Compare k+1 to 0  
  B.LT IndexOutOfBounds     // if k+1 < 0, goto Error  
  CMP X10,X11       // Compare k+1 to length  
  B.GE IndexOutOfBounds     // if k+1 >= length, goto Error  

  Figure 2.15.11    highlights the extra LEGv8 instructions in  swap  that a Java 
compiler might produce. We again must adjust the off set in the load and store to 
account for two doublewords reserved for the method table and length. 

  Figure 2.15.12    shows the method body for those new instructions for  sort . (We 
can take the saving, restoring, and return from  Figure 2.28 .) 

 Th e fi rst test is again to make sure the pointer to  v  is not null: 

  CBZ     X0,NullPointer                 // if X0==0,goto Error  

 FIGURE 2.15.11      LEGv8 assembly code of the procedure  swap  in Figure 2.24.    

Bounds check

swap: CBZ X0, NullPointer           # if X0==0,goto Error
 LDUR  X10, [X0,-8]         # Temp reg X10 = length of array v
 CMP   X1, XZR                   # Test if 1 if k < 0
 B.LT   IndexOutOfBounds         # if k < 0,goto Error
 CMP   X1, X10                 # Test if k >= length
 B.GT   IndexOutOfBounds         # if k >= length,goto Error
 ADDI   X9, X1, 1                 # Temp reg X9 = k+1
 CMP    X9, XZR                 # Test if k+1 < 0
 B.LT  IndexOutOfBounds         # if k+1 < 0,goto Error
 CMP    X9, X10                 # Test if k+1 >= length
 B.GT  IndexOutOfBounds         # if k+1 >= length,goto Error

Method body

 LSL X10, X1,3    # reg X10 = k * 8 
 ADD X10, X0,X10    # reg X10 = v + (k * 8) 

# reg X10 has the address of v[k]
 LDUR X9, [X10,0]    # reg X9 (temp) = v[k]
 LDUR X11,[X10,8]    # reg X11 = v[k + 1]

# refers to next element of v
 STUR X11,[X10,0]    # v[k] = reg X11
 STUR X9, [X10,8]    # v[k+1] = reg X9 (temp)

Procedure return

 BR X10            # return to calling routine
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 Next, we load the length of the array (we use register  X22  to keep it similar to the 
code for the C version of swap): 

  LDUR     X22, [X0, #8]       //X22 = length of array v  

 Now we must ensure that the index is within bounds. Since the fi rst test of the 
inner loop is to test if  j  is negative, we can skip that initial bound test. Th at leaves 
the test for too big: 

  CMP     X20,X22        // compare j to length  
  B.GE,IndexOutOfBounds       //if j > = length, goto Error  

 FIGURE 2.15.12      LEGv8 assembly version of the method body of the Java version of  sort .     Th e new code is highlighted in 
this fi gure. We must still add the code to save and restore registers and the return from the LEGv8 code found in  Figure 2.27 . To keep the code 
similar to that fi gure, we load  v.length  into  X22  instead of into a temporary register. To reduce the number of lines of code, we make the 
simplifying assumption that  compareTo  is a leaf procedure and we do not need to push registers to be saved on the stack.    

Method body

Move parameters # copy parameter X0 into X21X21, X0MOV

Test ptr null CBZ X0, NullPointer # if X0==0,goto Error

Get array length # X22 = length of array vX22, [X0,8]LDUR

Outer loop
# i = 0X19, XZRMOV

for1tst: CMP X19, X1t0, # test if X19 ≥ X1 (i ≥ n)
B.GT exitl # go to exit1 if X19 ≥ X1 (i ≥ n)

Inner loop start
SUBI X20, X19, 1 # j = i – 1

for2tst: CMP X20, XZR # Test if X20 < 0 (j < 0)
B.LT exit2 # go to exit2 if X20 < 0 (j < 0)

Test if j too big
CMP X20, X22 # Test if j >= length
B.GT IndexOutOfBounds # if j >= length, goto Error

Get v[j]
LSL X10, X20, 3 # reg X10 = j * 8
ADD X11, X0, X10 # reg X11 = v + (j * 8)
LDUR X12, [X11,0] # reg X12 = v[j]

Test if j+1 < 0 or if
j+1 too big

# Temp reg X10 = j+1X10, X20, 1ADDI
CMP X10, XZR # Test if j+1 < 0
B.LT IndexOutOfBounds # if j+1 < 0, goto Error
CMP X10, X22 # Test if j+1 >= length
B.GT IndexOutOfBounds # if j+1 >= length, goto Error

Get v[j+1] LDUR X13, [X11,8] # reg X13 = v[j + 1]

Load method table # X14 = address of method tableX14, [X0,0]LDUR

Get method addr # X14 = address of first methodX14, [X14,16]LDUR

Pass parameters # 1st parameter of compareTo is v[j] X0, X21MOV
# 2nd param. of compareTo is v[j+1]X1, X20MOV

Set return addr # load return addressX30,L1LDA

Call indirectly # call code for compareToX14BR

Test if should skip 
swap

L1: CMP X12, X13 # compare X12 to X13
B.LE exit2 # go to exit2 if  X12 ≤ X13

Pass parameters
and call swap

# 1st parameter of swap is vX0, X21MOV
# 2nd parameter of swap is jX1, X20MOV
# swap code shown in Figure 2.34swapBL

Inner loop end SUBI X20, X20, 1 # j –= 1
for2tstB # jump to test of inner loop

Outer loop exit2: ADDI X19, X19, 1 # i += 1
for1tstB # jump to test of outer loop
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 Th e code for testing  j + 1  is quite similar to the code for checking  k + 1  in 
 swap , so we skip it here. 

 Th e key diff erence is the invocation of  compareTo . We fi rst load the address 
of the table of legal methods, which we assume is two doublewords before the 
beginning of the array: 

  LDUR     X14, [X0,#0]       // X14 = address of method table  

 Given the address of the method table for this object, we then get the desired 
method. Let’s assume  compareTo  is the third method in the  Comparable  class. 
To pick the address of the third method, we load that address into a temporary 
register: 

  LDUR     X14, [X14, #16]        // X14 = address of third method  

 We are now ready to call  compareTo . Th e next step is to save the necessary 
registers on the stack. Fortunately, we don’t need the temporary registers or 
argument registers aft er the method invocation, so there is nothing to save. Th us, 
we simply pass the parameters for  compareTo : 

  MOV X0, X12        // 1st parameter of compareTo is v[j]  
  MOV X1, X13       // 2nd parameter of compareTo is v[j+1]  

 Since we are using a branch register to invoke  compareTo , we need to pass the 
return address explicitly. We use the pseudoinstruction load address ( LDA ) and 
label where we want to return, and then do the indirect branch: 

  LDA     X30,L1        // load return address  
  BR     X14           // to code for compareTo  

 Th e method returns, with  X6  determining which of the two elements is larger. 
If  X6 > 0 , then  v[j] >v[j+1] , and we need to  swap . Th us, to skip the  swap , 
we need to test if  X6  ≤     0 . We also need to include the label for the return address: 

  L1: CMP X6, XZR       // test if X6 ≤ 0  
  B.LE exit2       // go to exit2 if v[j] ≤ v[j+1]  

 Th e LEGv8 code for  compareTo  is left  as an exercise.   

    Th e main changes for the Java versions of  sort  and  swap  are testing for null object 
references and index out-of-bounds errors, and the extra method invocation to 
give a more general compare. Th is method invocation is more expensive than a 
C procedure call, since it requires a load, a conditional branch, a pair of chained 
loads, and an indirect branch. As we see in  Chapter 4 , dependent loads and indirect 
branches can be relatively slow on modern processors. Th e increasing popularity 
of Java suggests that many programmers today are willing to leverage the high 
performance of modern processors to pay for error checking and code reuse.   

 Hardware/
Software 
Interface 
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    Elaboration        Although we test each reference to  j  and  j  + 1 to be sure that these 
indices are within bounds, an assembly language programmer might look at the code 
and reason as follows:

   1.     Th e inner  for  loop is only executed if  j  ≤ 0 and since  j  + 1 >  j , there is no 
need to test  j  + 1 to see if it is less than 0.  

  2.     Since  i  takes on the values, 0, 1, 2, …, (data.length −   1) and since  j  takes on 
the values i −   1, i −   2, …, 2, 1, 0, there is no need to test if  j  ≤ data.length 
since the largest value  j  can be is data.length −   2.  

  3.     Following the same reasoning, there is no need to test whether  j  + 1 ≤  
 data.length since the largest value of  j +1 is data.length −   1.  

   There are coding tricks in  Chapter 2  and superscalar execution in  Chapter 4  that 
lower the effective cost of such bounds checking, but only high optimizing compilers 
can reason this way. Note that if the compiler inlined the swap method into sort, many 
checks would be unnecessary. 

        Elaboration        Look carefully at the code for swap in  Figure 2.15.11 . See anything 
wrong in the code, or at least in the explanation of how the code works? It implicitly 
assumes that each  Comparable  element in  v  is 8 bytes long. Surely, you need much 
more than 8 bytes for a complex subclass of  Comparable , which could contain any 
number of fi elds. Surprisingly, this code does work, because an important property of 
Java’s semantics forces the use of the same, small representation for all variables, 
fi elds, and array elements that belong to  Comparable  or its subclasses. 

 Java types are divided into  primitive types —the predefi ned types for numbers, 
characters, and Booleans—and  reference types —the built-in classes like String, 
user-defi ned classes, and arrays. Values of reference types are pointers (also called 
 references ) to anonymous objects that are themselves allocated in the heap. For the 
programmer, this means that assigning one variable to another does not create a new 
object, but instead makes both variables refer to the same object. Because these 
objects are anonymous, and programs therefore have no way to refer to them directly, 
a program must use indirection through a variable to read or write any objects’ fi elds 
(variables). Thus, because the data structure allocated for the array  v  consists entirely 
of pointers, it is safe to assume they are all the same size, and the same swapping code 
works for all of  Comparable ’s subtypes. 

 To write sorting and swapping functions for arrays of primitive types requires that 
we write new versions of the functions, one for each type. This replication is for two 
reasons. First, primitive type values do not include the references to dispatching tables 
that we used on  Comparables  to determine at runtime how to compare values. 
Second, primitive values come in different sizes: 1, 2, 4, or 8 bytes. 

 The pervasive use of pointers in Java is elegant in its consistency, with the penalty 
being a level of indirection and a requirement that objects be allocated on the heap. 
Furthermore, in any language where the lifetimes of the heap-allocated anonymous 
objects are independent of the lifetimes of the named variables, fi elds, and array 
elements that reference them, programmers must deal with the problem of deciding 
when it is safe to deallocate heap-allocated storage. Java’s designers chose to use 
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garbage collection. Of course, use of garbage collection rather than explicit user memory 
management also improves program safety. 

 C++ provides an interesting contrast. Although programmers can write essentially 
the same pointer-manipulating solution in C++, there is another option. In C++, 
programmers can elect to forgo the level of indirection and directly manipulate an array 
of objects, rather than an array of pointers to those objects. To do so, C++ programmers 
would typically use the template capability, which allows a class or function to be 
parameterized by the  type  of data on which it acts. Templates, however, are compiled 
using the equivalent of macro expansion. That is, if we declared an instance of sort 
capable of sorting types X and Y, C++ would create two copies of the code for the 
class: one for sort<X> and one for sort<Y>, each specialized accordingly. This solution 
increases code size in exchange for making comparison faster (since the function calls 
would not be indirect, and might even be subject to inline expansion). Of course, the 
speed advantage would be canceled if swapping the objects required moving large 
amounts of data instead of just single pointers. As always, the best design depends on 
the details of the problem.        


